
Low-Altitude Unmanned Aerial Vehicle Technology: Current Status and Prospects
Jun Zhang, Lei Chen, Zhijie Gao, Yingxian Duo
Strategic Study of CAE ›› 2025, Vol. 27 ›› Issue (2) : 73-85.
Low-Altitude Unmanned Aerial Vehicle Technology: Current Status and Prospects
The low-altitude economy is a new productivity booster and a strategic emerging industry with broad development prospects. Low-altitude unmanned aerial vehicles (UAVs), as superior platforms for diversified technological equipment, are poised to become the backbone of this economic sector through their high-performance and intelligent capabilities. This study correlates the modal, flight, and autonomous capabilities of low-altitude UAVs with their structural materials and flight control systems, positioning and navigation technologies, and autonomous intelligence systems. Through in-depth analysis of the current status and research trends across these three domains, the study proposes future technical directions focusing on bionic configurations, composite materials, multi-source fusion positioning, and hybrid intelligent algorithms. To advance the innovative development of low-altitude UAV technologies, the research recommends four strategic measures: (1) strengthening policy guidance and infrastructure development, (2) promoting technological innovation and optimizing industrial layout, (3) expanding application scenarios through demonstration projects, and (4) establishing comprehensive security protection systems. These initiatives aim to facilitate the high-quality development of China's UAV industry and low-altitude economy.
unmanned aerial vehicles / low altitude/ultra-low altitude / structural material / flight control / positioning and navigation / autonomous intelligence / human-vehicle interaction
[1] |
王耀南, 安果维, 王传成, 等. 智能无人系统技术应用与发展趋势 [J]. 中国舰船研究, 2022, 17(5): 9‒26.
Wang Y N, An G W, Wang C C, et al. Technology application and development trend of intelligent unmanned system [J]. Chinese Journal of Ship Research, 2022, 17(5): 9‒26.
|
[2] |
樊一江, 李卫波. 我国低空经济阶段特征及应用场景研究 [J]. 中国物价, 2024 (4): 98‒103.
Fan Y J, Li W B. The development stage and application scenarios of China's low-altitude economy [J]. China Price Journal, 2024 (4): 98‒103.
|
[3] |
裘德馨. 低空经济中无人机产业发展概述 [J]. 商业全球化, 2024, 12(3): 117‒122.
Qiu D X. Overview of the development of unmanned aerial vehicle industry in low altitude economy [J]. Business and Globalization, 2024, 12 (3): 117‒122.
|
[4] |
工业和信息化部, 科学技术部, 财政部, 等. 通用航空装备创新应用实施方案(2024—2030年) [EB/OL]. (2024-03-27)[2025-01-20]. https://www.gov.cn/zhengce/zhengceku/202403/content_6942115.htm.
Ministry of Industry and Information Technology of the People's Republic of China, Ministry of Science and Technology of the People's Republic of China, Ministry of Finance of the People's Republic of China, et al. Implementation plan for the innovative application of general aviation equipment (2024—2030) [EB/OL]. (2024-03-27)[2025-01-20]. https://www.gov.cn/zhengce/zhengceku/202403/content_6942115.htm.
|
[5] |
樊轶伦, 陈蕾, 张本科, 等. 基于多传感器的无人机配电网架空线路自主巡检和姿态控制 [J]. 电测与仪表, 2024, 61(8): 186‒194.
Fan Y L, Chen L, Zhang B K, et al. Autonomous inspection technology of overhead lines of distribution network and attitude control of UAVs based on multi-sensor fusion [J]. Electrical Measurement & Instrumentation, 2024, 61(8): 186‒194.
|
[6] |
许志浩, 周利, 吕伟, 等. 基于无人机激光点云的电力线路树障隐患预测技术分析 [J]. 工程建设与设计, 2024 (1): 159‒161.
Xu Z H, Zhou L, Lyu W, et al. Analysis of hidden danger prediction technology of power line tree obstacle based on UAV laser point cloud [J]. Construction & Design for Engineering, 2024 (1): 159‒161.
|
[7] |
全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议 [J]. 航空学报, 2020, 41(1): 023238.
Quan Q, Li G, Bai Y Q, et al. Low altitude UAV traffic management: An introductory overview and proposal [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023238.
|
[8] |
Shin W D, Phan H V, Daley M A, et al. Fast ground-to-air transition with avian-inspired multifunctional legs [J]. Nature, 2024, 636(8041): 86‒91.
|
[9] |
Falanga D, Kleber K, Mintchev S, et al. The foldable drone: A morphing quadrotor that can squeeze and fly [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 209‒216.
|
[10] |
Lee C, Kim S, Chu B. A survey: Flight mechanism and mechanical structure of the UAV [J]. International Journal of Precision Engineering and Manufacturing, 2021, 22(4): 719‒743.
|
[11] |
马航, 宋笔锋, 周忠彬, 等. 多段式变形翼技术发展现状分析 [J]. 战术导弹技术, 2024 (1): 75‒84, 112.
Ma H, Song B F, Zhou Z B, et al. Analysis of development status of multi-section morphing wing technology [J]. Tactical Missile Technology, 2024 (1): 75‒84, 112.
|
[12] |
朱继宏, 韩嘉诚, 谷小军, 等. 跨域飞行器结构与变构型设计技术进展与挑战 [J/OL]. 航空学报, 1‒33[2025-03-10]. http://kns.cnki.net/kcms/detail/11.1929.v.20250228.1032.010.html.
Zhu J H, Han J C, Gu X J, et al. Advances and challenges in cross-domain vehicle structures and morphing configuration design technologies [J/OL]. Acta Aeronautica et Astronautica Sinica, 1‒33[2025-03-10]. http://kns.cnki.net/kcms/detail/11.1929.v.20250228.1032.010.html.
|
[13] |
Di Luca M, Mintchev S, Heitz G, et al. Bioinspired morphing wings for extended flight envelope and roll control of small drones [J]. Interface Focus, 2017, 7(1): 20160092.
|
[14] |
Zhao X, Hu S, Wang Y, et al. Biodrone: A bionic drone-based single object tracking benchmark for robust vision [J]. International Journal of Computer Vision, 2024, 132(5): 1659‒1684.
|
[15] |
王晓璐, 刘威威, 李卓远, 等. 可重构布局无人机总体概念设计研究进展 [J]. 气动研究与试验, 2024 (2): 36‒41.
Wang X L, Liu W W, Li Z Y, et al. Progress on conceptual design of reconfigurable unmanned aerial vehicles [J]. Aerodynamic Research & Experiment, 2024 (2): 36‒41.
|
[16] |
李春鹏, 张铁军, 钱战森, 等. 多用途无人机模块化布局气动设计 [J]. 航空学报, 2022, 43(7): 125411.
Li C P, Zhang T J, Qian Z S, et al. Aerodynamic design of modular configuration for multi-mission unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 125411.
|
[17] |
Zhang Q S, Jia S, Chen J B, et al. Configuration design and topology optimization of a single wing for the hybrid unmanned aerial vehicle [J]. Journal of Tsinghua University (Science and Technology), 2023, 63(3): 423‒432.
|
[18] |
葛佳昊, 刘莉, 贺云涛, 等. 无人机先进结构复合材料应用及关键技术研究 [J]. 战术导弹技术, 2019 (2): 67‒72.
Ge J H, Liu L, He Y T, et al. Application and key technology research on advanced structural composite materials for unmanned aerial vehicle [J]. Tactical Missile Technology, 2019 (2): 67‒72.
|
[19] |
段国晨, 赵景丽, 赵伟超. 先进复合材料在无人机结构的应用 [J]. 纤维复合材料, 2022, 39(2): 105‒114.
Duan G C, Zhao J L, Zhao W C. Application of advanced composite materials in UAV at home and abroad [J]. Fiber Composites, 2022, 39(2): 105‒114.
|
[20] |
王磊平. 先进复合材料在无人机上的应用及关键技术 [J]. 信息记录材料, 2025, 26(2): 22‒24.
Wang L P. Application and key technologies of advanced composite materials in UAV [J]. Information Recording Materials, 2025, 26(2): 22‒24.
|
[21] |
王文慧, 王胜, 刘帅, 等. 增强抗冲击和热性能的功能防护复合材料(英文) [J]. 中国科学技术大学学报, 2023, 53(4): 49‒59, 72.
Wang W H, Wang S, Liu S, et al. Functional protective composite materials for enhancing impact resistance and thermal performance [J]. Journal of University of Science and Technology of China, 2023, 53(4): 49‒59, 72.
|
[22] |
孔娜, 王增加, 王希杰, 等. 无人机超轻碳纤维复合材料结构件成型技术研究 [J]. 宇航材料工艺, 2024, 54(6): 65‒70.
Kong N, Wang Z J, Wang X J, et al. Research on molding technology of ultra-light carbon fiber composites parts for UAV [J]. Aerospace Materials & Technology, 2024, 54(6): 65‒70.
|
[23] |
薛俊昊, 刘金南. 无人机复合材料结构的机械设计与制造工艺研究 [J]. 造纸装备及材料, 2024, 53(11): 85‒87.
Xue J H, Liu J N. Research on mechanical design and manufacturing technology of UAV composite structure [J]. Papermaking Equipment & Materials, 2024, 53(11): 85‒87.
|
[24] |
曹鑫, 李聪健, 高川, 等. 智能变体飞行器未来作战关键技术 [J/OL]. 航空工程进展, 1‒11[2025-01-20]. http://kns.cnki.net/kcms/detail/61.1479.v.20240930.0938.002.html.
Cao X, Li C J, Gao C, et al. Key technologies for future combat of intelligent variant aircraft [J/OL]. Advances in Aeronautical Science and Engineering, 1‒11[2025-01-20]. http://kns.cnki.net/kcms/detail/61.1479.v.20240930.0938.002.html.
|
[25] |
付文杰, 马贵春, 杨亚超, 等. 基于数据驱动的四旋翼模型参数辨识 [J]. 机械设计与制造工程, 2024, 53(9): 83‒88.
Fu W J, Ma G C, Yang Y C, et al. Data-driven parameter identification of quadrotor models [J]. Machine Design and Manufacturing Engineering, 2024, 53(9): 83‒88.
|
[26] |
Wang Y, Liu C, Zhang K T. A novel morphing quadrotor UAV with sarrus-linkage-based reconfigurable frame [R]. Chicago: 2024 6th International Conference on Reconfigurable Mechanisms and Robots (ReMAR), 2024.
|
[27] |
Luo Y H, Yu H, Zhang H G, et al. A novel Newton-Euler method-based nonlinear anti-swing control for a quadrotor UAV carrying a slung load [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2024, 54(4): 2266‒2275.
|
[28] |
Zhang J Q, Zhou L H, Li C X, et al. Binary observers based control for quadrotor unmanned aerial vehicle with disturbances and measurement delay [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(15): 2807‒2820.
|
[29] |
Lu Q, Ren B B, Parameswaran S. Shipboard landing control enabled by an uncertainty and disturbance estimator [J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1502‒1520.
|
[30] |
Kangunde V, Jamisola R S Jr, Theophilus E K. A review on drones controlled in real-time [J]. International Journal of Dynamics and Control, 2021, 9(4): 1832‒1846.
|
[31] |
Sonugür G. A review of quadrotor UAV: Control and SLAM methodologies ranging from conventional to innovative approaches [J]. Robotics and Autonomous Systems, 2023, 161: 104342.
|
[32] |
Yuan Y, Cheng L, Wang Z D, et al. Position tracking and attitude control for quadrotors via active disturbance rejection control method [J]. Science China Information Sciences, 2018, 62(1): 10201.
|
[33] |
Lyu X M, Zhou J N, Gu H W, et al. Disturbance observer based hovering control of quadrotor tail-sitter VTOL UAVs using H ∞ synthesis [J]. IEEE Robotics and Automation Letters, 2018, 3(4): 2910‒2917.
|
[34] |
Xia Y, Xu Y S, Li S, et al. SOE-net: A self-attention and orientation encoding network for point cloud based place recognition [R]. Nashville: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.
|
[35] |
Liu J B, Qiu X L, Ding C B. The first attempt of SAR visual-inertial odometry [J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 287‒304.
|
[36] |
Li K, Zhao J X, Wang X Y, et al. Federated ultra-tightly coupled GPS/INS integrated navigation system based on vector tracking for severe jamming environment [J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1030‒1037.
|
[37] |
Arreola L, Montes de Oca A, Flores A, et al. Improvement in the UAV position estimation with low-cost GPS, INS and vision-based system: Application to a quadrotor UAV [R]. Dallas: 2018 International Conference on Unmanned Aircraft Systems (ICUAS), 2018.
|
[38] |
Morales J J, Kassas Z M. Tightly coupled inertial navigation system with signals of opportunity aiding [J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1930‒1948.
|
[39] |
Shin B, Jeon S, Lee J, et al. Precise localization technology of mobile phone on a vehicle in tunnel using LTE signal based surface correlation [R]. Miami: The International Technical Meeting of the Satellite Division of The Institute of Navigation, 2018.
|
[40] |
Halili R, BniLam N, Yusuf M, et al. Vehicle localization using Doppler shift and time of arrival measurements in a tunnel environment [J]. Sensors, 2022, 22(3): 847.
|
[41] |
Zhang Y X. A fusion methodology to bridge GPS outages for INS/GPS integrated navigation system [J]. IEEE Access, 2019, 7: 61296‒61306.
|
[42] |
W W S, Pfeifer T, Bai X W, et al. Factor graph optimization for GNSS/INS integration: A comparison with the extended Kalman filter [J]. NAVIGATION: Journal of the Institute of Navigation, 2021, 68 (2): 239‒242.
|
[43] |
Saboury J. Multi-tap extended Kalman filter for a periodic waveform with uncertain frequency and waveform shape, and data dropouts [D]. Milwaukee: The University of Wisconsin-Milwaukee (Doctoral dissertation), 2019.
|
[44] |
Campos C, Elvira R, Rodríguez J J G, et al. ORB-SLAM3: An accurate open-source library for visual, visual‒inertial, and multimap SLAM [J]. IEEE Transactions on Robotics, 2021, 37(6): 1874‒1890.
|
[45] |
Qin T, Li P L, Shen S J. VINS-mono: A robust and versatile monocular visual-inertial state estimator [J]. IEEE Transactions on Robotics, 2018, 34(4): 1004‒1020.
|
[46] |
Chen L Y, Li S B, Bai Q, et al. Review of image classification algorithms based on convolutional neural networks [J]. Remote Sensing, 2021, 13(22): 4712.
|
[47] |
He Y J, Zhao J, Guo Y, et al. PL-VIO: Tightly-coupled monocular visual-inertial odometry using point and line features [J]. Sensors, 2018, 18(4): 1159.
|
[48] |
Zhao S G, Zhang T, Wei H Y. Fast visual inertial odometry with point‒line features using adaptive EDLines algorithm [J]. Measurement Science and Technology, 2022, 33(10): 105401.
|
[49] |
Liu Z, Shi D X, Li R H, et al. PLC-VIO: Visual‒inertial odometry based on point-line constraints [J]. IEEE Transactions on Automation Science and Engineering, 2022, 19(3): 1880‒1897.
|
[50] |
Yin H, Ding X Q, Tang L, et al. Efficient 3D LIDAR based loop closing using deep neural network [R]. Macao: 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017.
|
[51] |
Cop K P, Borges P V K, Dubé R. Delight: An efficient descriptor for global localisation using LiDAR intensities [R]. Brisbane: 2018 IEEE International Conference on Robotics and Automation (ICRA), 2018.
|
[52] |
Charles R Q, Hao S, Mo K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation [R]. Honolulu: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
|
[53] |
Zhang W X, Xiao C X. PCAN: 3D attention map learning using contextual information for point cloud based retrieval [R]. Long Beach: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
|
[54] |
Wiesmann L, Marcuzzi R, Stachniss C, et al. Retriever: Point cloud retrieval in compressed 3D maps [R]. Philadelphia: 2022 International Conference on Robotics and Automation (ICRA), 2022.
|
[55] |
Zhou Z C, Zhao C, Adolfsson D, et al. NDT-transformer: Large-scale 3D point cloud localisation using the normal distribution transform representation [R]. Xi'an: 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021.
|
[56] |
Komorowski J. Improving point cloud based place recognition with ranking-based loss and large batch training [R]. Montreal: 2022 26th International Conference on Pattern Recognition (ICPR), 2022.
|
[57] |
Fan Y F, He Y C, Tan U X. Seed: A segmentation-based egocentric 3D point cloud descriptor for loop closure detection [R]. Las Vegas: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020.
|
[58] |
Yin P, Wang F Y, Egorov A, et al. Fast sequence-matching enhanced viewpoint-invariant 3-D place recognition [J]. IEEE Transactions on Industrial Electronics, 2022, 69(2): 2127‒2135.
|
[59] |
刘庆健, 疏利生, 刘刚, 等. 低空无人机路径规划算法综述 [J]. 航空工程进展, 2023, 14(2): 24‒34.
Liu Q J, Shu L S, Liu G, et al. A survey of low altitude UAV path planning algorithms [J]. Advances in Aeronautical Science and Engineering, 2023, 14(2): 24‒34.
|
[60] |
程昊宇, 张硕, 刘泰涞, 等. 无人飞行器自主决策与规划技术综述 [J]. 空天防御, 2024, 7(1): 6‒15, 80.
Cheng H Y, Zhang S, Liu T L, et al. Review of autonomous decision-making and planning techniques for unmanned aerial vehicle [J]. Air & Space Defense, 2024, 7(1): 6‒15, 80.
|
[61] |
苏翎菲, 化永朝, 董希旺, 等. 人与无人机集群多模态智能交互方法 [J]. 航空学报, 2022, 43(S1): 727001.
Su L F, Hua Y Z, Dong X W, et al. Multi-modal intelligent interaction method between human and UAV cluster [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 727001.
|
[62] |
刘君兰, 张文博, 姬红兵, 等. 无人机集群路径规划算法研究综述 [J]. 航天电子对抗, 2022, 38(1): 9‒12.
Liu J L, Zhang W B, Ji H B, et al. A summary of UAV swarm path planning algorithm research [J]. Aerospace Electronic Warfare, 2022, 38(1): 9‒12.
|
[63] |
辛建霖, 左家亮, 岳龙飞, 等. 基于改进启发式蚁群算法的无人机自主航迹规划 [J]. 航空工程进展, 2022, 13(1): 60‒67.
Xin J L, Zuo J L, Yue L F, et al. Autonomous path planning for unmanned aerial vehicle (UAV) based on improved heuristic ant colony algorithm [J]. Advances in Aeronautical Science and Engineering, 2022, 13(1): 60‒67.
|
[64] |
Wu Q Z, Liu K X, Chen L. Model predictive control-based value estimation for efficient reinforcement learning [J]. IEEE Intelligent Systems, 2024, 39(3): 63‒72.
|
[65] |
Zhao R, Li Y, Gao F, et al. Multi-agent constrained policy optimization for conflict-free management of connected autonomous vehicles at unsignalized intersections [J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5374‒5388.
|
[66] |
袁利. 面向不确定环境的航天器智能自主控制技术 [J]. 宇航学报, 2021, 42(7): 839‒849.
Yuan L. Spacecraft intelligent autonomous control technology toward uncertain environment [J]. Journal of Astronautics, 2021, 42(7): 839‒849.
|
[67] |
鞠锴, 冒泽慧, 姜斌, 等. 基于势博弈的异构多智能体系统任务分配和重分配 [J]. 自动化学报, 2022, 48(10): 2416‒2428.
Ju K, Mao Z H, Jiang B, et al. Task allocation and reallocation for heterogeneous multiagent systems based on potential game [J]. Acta Automatica Sinica, 2022, 48(10): 2416‒2428.
|
[68] |
施伟, 冯旸赫, 程光权, 等. 基于深度强化学习的多机协同空战方法研究 [J]. 自动化学报, 2021, 47(7): 1610‒1623.
Shi W, Feng Y H, Cheng G Q, et al. Research on multi-aircraft cooperative air combat method based on deep reinforcement learning [J]. Acta Automatica Sinica, 2021, 47(7): 1610‒1623.
|
[69] |
张建东, 王鼎涵, 杨啟明, 等. 基于分层强化学习的无人机空战多维决策 [J]. 兵工学报, 2023, 44(6): 1547‒1563.
Zhang J D, Wang D H, Yang Q M, et al. Multi-dimensional decision-making for UAV air combat based on hierarchical reinforcement learning [J]. Acta Armamentarii, 2023, 44(6): 1547‒1563.
|
[70] |
徐巍峰, 徐非非, 王文军, 等. 基于语义本体的无人机人机交互控制方法研究 [J]. 计算机应用与软件, 2021, 38(12): 103‒109, 148.
Xu W F, Xu F F, Wang W J, et al. Human-UAV interaction control based on semantic ontology [J]. Computer Applications and Software, 2021, 38(12): 103‒109, 148.
|
[71] |
Kocer B B, Tjahjowidodo T, Seet G G L. Model predictive UAV-tool interaction control enhanced by external forces [J]. Mechatronics, 2019, 58: 47‒57.
|
[72] |
Sun J, Chen Q D, Sun J N, et al. Graph-structured multitask sparsity model for visual tracking [J]. Information Sciences, 2019, 486: 133‒147.
|
[73] |
陶建华, 巫英才, 喻纯, 等. 多模态人机交互综述 [J]. 中国图象图形学报, 2022, 27(6): 1956‒1987.
Tao J H, Wu Y C, Yu C, et al. A survey on multi-modal human-computer interaction [J]. Journal of Image and Graphics, 2022, 27(6): 1956‒1987.
|
/
〈 |
|
〉 |