
Key Technologies and Innovative Applications of Special Unmanned Aerial Vehicles
Changle Xiang, Bin Xu, Shouxing Tang, Wei Fan, Han Sun, Runjiang Liu, Xingjian Wen, Chao Rui
Key Technologies and Innovative Applications of Special Unmanned Aerial Vehicles
Special unmanned aerial vehicles (UAVs) are UAVs designed, modified, or equipped with special equipment to satisfy special task requirements in fields such as military defense, emergency rescue, and special industries. They have high maneuverability, strong adaptability, and integrated mission capabilities, and play a key role in national construction and national defense security. This study analyzes the current research status and trends of special UAVs in China and abroad from two aspects: traditional and innovative configurations. Subsequently, it identifies the requirements for typical task capabilities and challenges faced by special UAVs in fields of military defense, emergency rescue, and special industries. On this basis, it outlines a special UAV technology system that comprises special platforms, intelligent control, and support systems, and elaborates on the key technologies involved in these three parts. Furthermore, the study proposes suggestions for the development of special UAV technologies and equipment in China from the aspects of overall planning and future research directions. This aims to promote the deep integration of special UAVs in the modernization of national defense and the high-quality economic and social development.
special unmanned aerial vehicles / special platform / intelligent control / support systems / cross-domain maneuverability
[1] |
金钰, 谷全祥. 2023年国外军用无人机装备技术发展综述 [J]. 战术导弹技术, 2024 (1): 33‒47.
Jin Y, Gu Q X. Overview of the development of foreign military UAV systems and technology in 2023 [J]. Tactical Missile Technology, 2024 (1): 33‒47.
|
[2] |
蔡佳文. 政策赋能低空经济进入发展新阶段 [N]. 中国商报, 2025-01-07(02).
Cai J W. Policy empowers low altitude economy to enter a new stage of development [N]. China Business Herald, 2025-01-07(02).
|
[3] |
赵春晖, 刘安萌, 吕洋, 等. 无人机韧性自主定位技术综述 [J]. 航空学报, 2024, 45(8): 028839.
Zhao C H, Liu A M, Lyu Y, et al. A survey of resilient self-localization for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 028839.
|
[4] |
王琼, 刘美万, 任伟建, 等. 无人机航迹规划常用算法综述 [J]. 吉林大学学报(信息科学版), 2019, 37(1): 58‒67.
Wang Q, Liu M W, Ren W J, et al. Overview of common algorithms for UAV path planning [J]. Journal of Jilin University (Information Science Edition), 2019, 37(1): 58‒67.
|
[5] |
向锦武, 阚梓, 邵浩原, 等. 长航时无人机关键技术研究进展 [J]. 哈尔滨工业大学学报, 2020, 52(6): 57‒77.
Xiang J W, Kan Z, Shao H Y, et al. A review of key technologies for long-endurance unmanned aerial vehicle [J]. Journal of Harbin Institute of Technology, 2020, 52(6): 57‒77.
|
[6] |
郑济沅, 周亢. 基于动力源分类的无人机起飞方式综述 [J]. 兵器装备工程学报, 2024, 45(1): 148‒158.
Zheng J Y, Zhou K. A review on the take-off method of UAVs based on their different power sources [J]. Journal of Ordnance Equipment Engineering, 2024, 45(1): 148‒158.
|
[7] |
何道敬, 杜晓, 乔银荣, 等. 无人机信息安全研究综述 [J]. 计算机学报, 2019, 42(5): 1076‒1094.
He D J, Du X, Qiao Y R, et al. A survey on cyber security of unmanned aerial vehicles [J]. Chinese Journal of Computers, 2019, 42(5): 1076‒1094.
|
[8] |
全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议 [J]. 航空学报, 2020, 41(1): 023238.
Quan Q, Li G, Bai Y Q, et al. Low altitude UAV traffic management: An introductory overview and proposal [J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 023238.
|
[9] |
刘雷, 刘大卫, 王晓光, 等. 无人机集群与反无人机集群发展现状及展望 [J]. 航空学报, 2022, 43(S1): 726908.
Liu L, Liu D W, Wang X G, et al. Development status and prospect of UAV cluster and anti-UAV cluster [J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(S1): 726908.
|
[10] |
芦艳春, 周开园, 张建杰. 无人机的发展现状及其在航空应急救援领域的应用综述 [J]. 医疗卫生装备, 2023, 44(10): 108‒113.
Lu Y C, Zhou K Y, Zhang J J. Development status of UAV and its application in aviation emergency rescue [J]. Chinese Medical Equipment Journal, 2023, 44(10): 108‒113.
|
[11] |
谷天培. 多旋翼无人机在城市消防灭火救援中的应用 [J]. 消防界(电子版), 2022 (22): 52‒54.
Gu T P. Application of multi-rotor UAV in urban fire fighting and rescue [J]. Fire Protection Industry (Electronic Version),2022 (22): 52‒54.
|
[12] |
王科雷, 周洲, 马悦文, 等. 垂直起降固定翼无人机技术发展及趋势分析 [J]. 航空工程进展, 2022, 13(5): 1‒13.
Wang K L, Zhou Z, Ma Y W, et al. Development and trend analysis of vertical takeoff and landing fixed wing UAV [J]. Advances in Aeronautical Science and Engineering, 2022, 13(5): 1‒13.
|
[13] |
黄俊. 分布式电推进飞机设计技术综述 [J]. 航空学报, 2021, 42(3): 624037.
Huang J. Survey on design technology of distributed electric propulsion aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624037.
|
[14] |
韦振鹏, 刘峰, 杨森. 垂直起降固定翼无人机发展现状与技术要点 [J]. 飞机设计, 2024, 44(1): 5‒13.
Wei Z P, Liu F, Yang S. Development and key technologies of vertical take-off and landing UAV with fixed wing [J]. Aircraft Design, 2024, 44(1): 5‒13.
|
[15] |
Nguyen P H, Patnaik K, Mishra S, et al. A soft-bodied aerial robot for collision resilience and contact-reactive perching [J]. Soft Robotics, 2023, 10(4): 838‒851.
|
[16] |
Ben David N, Zarrouk D. Design and analysis of FCSTAR, a hybrid flying and climbing sprawl tuned robot [J]. IEEE Robotics and Automation Letters, 2021, 6(4): 6188‒6195.
|
[17] |
Zhang R B, Wu Y Z, Zhang L X, et al. Autonomous and adaptive navigation for terrestrial-aerial bimodal vehicles [J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3008‒3015.
|
[18] |
Falanga D, Kleber K, Mintchev S, et al. The foldable drone: A morphing quadrotor that can squeeze and fly [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 209‒216.
|
[19] |
Kalantari A, Touma T, Kim L, et al. Drivocopter: A concept Hybrid Aerial/Ground vehicle for long-endurance mobility [R]. Big Sky: 2020 IEEE Aerospace Conference, 2020.
|
[20] |
Kalantari A, Spenko M. Design and experimental validation of HyTAQ, a hybrid terrestrial and aerial quadrotor [R]. Karlsruhe: 2013 IEEE International Conference on Robotics and Automation, 2013.
|
[21] |
Bai Y L, Jin Y F, Liu C H, et al. Nezha-F: Design and analysis of a foldable and self-deployable HAUV [J]. IEEE Robotics and Automation Letters, 2023, 8(4): 2309‒2316.
|
[22] |
童晟翔, 史志伟, 耿玺, 等. 组合式仿枫树子飞行器与空中分体技术 [J]. 航空学报, 2024, 45(6): 80‒95.
Tong S X, Shi Z W, Geng X, et al. Combinable samara aircraft and controlled separation technique [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 80‒95.
|
[23] |
孙浩亮, 梁海军, 张东顺. 美军自主无人系统发展及启示 [J]. 舰船电子工程, 2022, 42(7): 1‒4, 19.
Sun H L, Liang H J, Zhang D S. Development and enlightenment of the U.S. military autonomous unmanned system [J]. Ship Electronic Engineering, 2022, 42(7): 1‒4, 19.
|
[24] |
薛德鑫, 单涛, 徐宁骏, 等. 军用作战无人机未来发展研究 [J]. 指挥控制与仿真, 2022, 44(6): 1‒6.
Xue D X, Shan T, Xu N J, et al. Research on the future development of military combat UAV [J]. Command Control & Simulation, 2022, 44(6): 1‒6.
|
[25] |
Xiao C W, Wang B, Zhao D, et al. Comprehensive investigation on Lithium batteries for electric and hybrid-electric unmanned aerial vehicle applications [J]. Thermal Science and Engineering Progress, 2023, 38: 101677.
|
[26] |
Larin V, Chichikalo N, Larina K, et al. Algorithm for processing of informative and influencing factors in UAV battery discharge management system [R]. Kyiv: 2021 IEEE 6th International Conference on Actual Problems of Unmanned Aerial Vehicles Development (APUAVD), 2021.
|
[27] |
Gabbar H, Othman A, Abdussami M. Review of battery management systems (BMS) development and industrial standards [J]. Technologies, 2021, 9(2): 28.
|
[28] |
Krinner M, Romero A, Bauersfeld L, et al. MPCC++: Model predictive contouring control for time-optimal flight with safety constraints [R]. Robotics: Science and Systems XX, 2024.
|
[29] |
Raffo G V, Ortega M G, Rubio F R. An integral predictive/nonlinear H ∞ control structure for a quadrotor helicopter [J]. Automatica, 2010, 46(1): 29‒39.
|
[30] |
Xu J, Shi P, Lim C C, et al. Reliable tracking control for under-actuated quadrotors with wind disturbances [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2019, 49(10): 2059‒2070.
|
[31] |
Zhang T, Ng J Y, Tai V C. Comparative analysis of attitude control of quadrotor UAVs: PID, ADRC, and NMPC algorithms [R]. Hangzhou: 2024 9th International Conference on Electronic Technology and Information Science (ICETIS), 2024.
|
[32] |
Zhang Y M, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems [J]. Annual Reviews in Control, 2008, 32(2): 229‒252.
|
[33] |
López-Estrada F R, Ponsart J C, Theilliol D, et al. LPV model-based tracking control and robust sensor fault diagnosis for a quadrotor UAV [J]. Journal of Intelligent & Robotic Systems, 2016, 84(1): 163‒177.
|
[34] |
Chen F Y, Zhang K K, Wang Z, et al. Trajectory tracking of a quadrotor with unknown parameters and its fault-tolerant control via sliding mode fault observer [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2015, 229(4): 279‒292.
|
[35] |
Zhong Y J, Zhang Y M, Zhang W. Active fault-tolerant tracking control of a quadrotor UAV [R]. Xi’an: 2018 International Conference on Sensing, Diagnostics, Prognostics, and Control (SDPC), 2018.
|
[36] |
陈新颖, 盛敏, 李博, 等. 面向6G的无人机通信综述 [J]. 电子与信息学报, 2022, 44(3): 781‒789.
Chen X Y, Sheng M, Li B, et al. Survey on unmanned aerial vehicle communications for 6G [J]. Journal of Electronics & Information Technology, 2022, 44(3): 781‒789.
|
[37] |
何玉庆, 秦天一, 王楠. 跨域协同: 无人系统技术发展和应用新趋势 [J]. 无人系统技术, 2021, 4(4): 1‒13.
He Y Q, Qin T Y, Wang N. Cross-domain collaboration: New trends in the development and application of unmanned systems technology [J]. Unmanned Systems Technology, 2021, 4(4): 1‒13.
|
[38] |
初军田, 张武, 丁超, 等. 跨域无人系统协同作战需求分析 [J]. 指挥信息系统与技术, 2022, 13(6): 1‒8.
Chu J T, Zhang W, Ding C, et al. Requirement analysis on cross-domain unmanned system cooperative operation [J]. Command Information System and Technology, 2022, 13(6): 1‒8.
|
/
〈 |
|
〉 |