Development of Deep-Sea Floating Wind Power Technology

Da Li, Tao Sun, Cong Yi, Wei Gao, Shuzhao Li, Baicheng Lyu, Hui Li, Yuming Zhang, Zhuolantai Bai, Junrong Wang, Huajun Li

Strategic Study of CAE ›› 2025

PDF(1456 KB)
PDF(1456 KB)
Strategic Study of CAE ›› 2025 DOI: 10.15302/J-SSCAE-2024.12.024

Development of Deep-Sea Floating Wind Power Technology

Author information +
History +

Abstract

Advancing the deep-sea floating wind power technology is an effective pathway to reducing costs and enhancing efficiency in offshore wind power development, driving structural reforms in the energy system, and achieving the carbon peaking and carbon neutralization vision. Therefore, achieving breakthroughs in core technologies regarding deep-sea floating wind power and accelerating the construction of cost-effective offshore wind power systems have become major tasks in China's energy and electricity fields. This study reviews the development status of deep-sea floating wind power in China and abroad, analyzes the challenges faced by China's deep-sea wind power industry, and explores the key elements for technological breakthroughs in deep-sea floating wind power, involving key scientific issues, core technologies, and basic software capabilities (e.g., integrated coupling design and analysis and real-time digital twin systems). Specifically, the key scientific issues include evolution of aerodynamic loads on wind turbines, motion suppression for semi-submersible foundations, resonance of tension-leg-platform-type foundations, and testing across physical fields. The core technologies include aerodynamic modeling of wind turbines, integrated coupling analysis, structural fatigue analysis, mooring and dynamic cable analysis, load capacity analysis for mooring foundations, advanced material development and testing, large-scale customization of foundation structures, integration and offshore installation and reconnection, and intelligent operation and maintenance (O&M). Additionally, the technical development directions of deep-sea floating wind power technology are elaborated, including different types of floating foundations, overall design of floating wind turbines, independent research and development of key products, core industrial software, efficient construction and installation, and intelligent O&M. Furthermore, it is proposed to establish a technological innovation chain, form an intelligent construction and installation chain, and expand the intelligent O&M system for deep-sea wind power, providing forward thinking for the research and engineering application of the deep-sea floating wind power technology in China.

Graphical abstract

Keywords

offshore wind power / deep-sea / floating offshore wind turbine / integrated coupling analysis / technological innovation chain / installation industry chain / intelligent operation and maintenance

Cite this article

Download citation ▾
Da Li, Tao Sun, Cong Yi, Wei Gao, Shuzhao Li, Baicheng Lyu, Hui Li, Yuming Zhang, Zhuolantai Bai, Junrong Wang, Huajun Li. Development of Deep-Sea Floating Wind Power Technology. Strategic Study of CAE, 2025 https://doi.org/10.15302/J-SSCAE-2024.12.024

References

[1]
廖圣瑄, 陈可仁. 能源岛: 深远海域海上风电破局关键 [J]. 能源, 2021 (5): 46‒49.
Liao S X, Chen K R. Energy island: The key to the failure of offshore wind power in far-reaching waters [J]. Energy, 2021 (5): 46‒49.
[2]
Global Wind Energy Council. Global wind report 2024 [R]. Brussels: Global Wind Energy Council, 2024.
[3]
Sahu S K, Kumar V, Chandra Dutta S, et al. Structural safety of offshore wind turbines: Present state of knowledge and future challenges [J]. Ocean Engineering, 2024, 309: 118383.
[4]
刘霞. 漂浮式海上风电将掀起能源革新浪潮 [N]. 科技日报, 2023-07-07(04).
Liu X. Floating offshore wind power to spark a new wave of energy revolution [N]. Science and Technology Daily, 2023-07-07(04).
[5]
曹宏宇. 漂浮式海上风电技术发展前景探析 [J]. 产业创新研究, 2023 (12): 148‒150.
Cao H Y. Analysis on the development prospect of floating offshore wind power technology [J]. Industrial Innovation, 2023 (12): 148‒150.
[6]
Terrero-Gonzalez A, Dai S S, Neilson R D, et al. Dynamic response of a shallow-draft floating wind turbine concept: Experiments and modelling [J]. Renewable Energy, 2024, 226: 120454.
[7]
朱海山, 李达. 陵水17-2气田"深海一号"能源站总体设计及关键技术研究 [J]. 中国海上油气, 2021, 33(3): 160‒169.
Zhu H S, Li D. Research on overall design and key technologies of "Deep Sea No.1" energy station in LS17-2 gas field [J]. China Offshore Oil and Gas, 2021, 33(3): 160‒169.
[8]
李达, 白雪平, 张婧文, 等. 圆筒型FPSO总体设计方案与关键技术——以"海洋石油122"为例 [J]. 中国海上油气, 2023, 35(2): 184‒194.
Li D, Bai X P, Zhang J W, et al. Overall design scheme and key technologies of cylindrical FPSO: Taking "HYSY122" as an example [J]. China Offshore Oil and Gas, 2023, 35(2): 184‒194.
[9]
Huang W, Tang R J, Ma H H. The review of vortex lattice method for offshore wind turbines [J]. Renewable Energy, 2024, 236: 121450.
[10]
Onstad A E, Stokke M, Sætran L. Site assessment of the floating wind turbine hywind demo [J]. Energy Procedia, 2016, 94: 409‒416.
[11]
Qaiser M T, Ejaz J, Osen O, et al. Digital twin-driven energy modeling of Hywind Tampen floating wind farm [J]. Energy Reports, 2023, 9: 284‒289.
[12]
Vieira M, Macedo A, Alvarenga A, et al. What future for marine renewable energy in Portugal and Spain up to 2030? Forecasting plausible scenarios using general morphological analysis and clustering techniques [J]. Energy Policy, 2024, 184: 113859.
[13]
Wan L, Moan T, Gao Z, et al. A review on the technical development of combined wind and wave energy conversion systems [J]. Energy, 2024, 294: 130885.
[14]
王富强, 郝军刚, 李帅, 等. 漂浮式海上风电关键技术与发展趋势 [J]. 水力发电, 2022, 48(10): 9‒12, 117.
Wang F Q, Hao J G, Li S, et al. Key technologies and development trends of floating offshore wind turbine [J]. Water Power, 2022, 48(10): 9‒12, 117.
[15]
严新荣, 张宁宁, 马奎超, 等. 我国海上风电发展现状与趋势综述 [J]. 发电技术, 2024, 45(1): 1‒12.
Yan X R, Zhang N N, Ma K C, et al. Overview of current situation and trend of offshore wind power development in China [J]. Power Generation Technology, 2024, 45(1): 1‒12.
[16]
周昳鸣, 闫姝, 刘鑫, 等. 中国海上风电支撑结构一体化设计综述 [J]. 发电技术, 2023, 44(1): 36‒43.
Zhou Y M, Yan S, Liu X, et al. Summary of offshore wind support structure integrated design in China [J]. Power Generation Technology, 2023, 44(1): 36‒43.
[17]
刘晓辉, 高人杰, 薛宇. 浮式风力发电机组现状及发展趋势综述 [J]. 分布式能源, 2020, 5(3): 39‒46.
Liu X H, Gao R J, Xue Y. Current situation and future development trend of floating offshore wind turbine [J]. Distributed Energy, 2020, 5(3): 39‒46.
[18]
王宇航, 周绪红, 杨琳, 等. 风电机组支撑结构技术发展现状及趋势 [J]. 钢结构(中英文), 2024, 39(10): 1‒13.
Wang Y H, Zhou X H, Yang L, et al. Current status and development trend of supporting structures for wind turbines [J]. Steel Construction (Chinese & English), 2024, 39(10): 1‒13.
[19]
Chen Y H, Lin H Y. Overview of the development of offshore wind power generation in China [J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102766.
[20]
米立军, 李达, 高巍. 深远海漂浮式风电技术发展现状与思考 [J]. 新型电力系统, 2023 (3): 211‒220.
Mi L J, Li D, Gao W. Current status and thinking on deepsea floating wind power technology [J]. New Type Power Systems, 2023 (3): 211‒220.
[21]
Leng J, Li G, Duan L. The impact of extreme wind conditions and yaw misalignment on the aeroelastic responses of a parked offshore wind turbine [J]. Ocean Engineering, 2024, 313: 119403.
[22]
Li L, Liu Y C, Yuan Z M, et al. Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines [J]. Energy, 2018, 157: 379‒390.
[23]
Zhou Y, Xiao Q, Liu Y C, et al. Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation [J]. Renewable Energy, 2022, 182: 1060‒1079.
[24]
Tang H J, Ong M C, Hsu T W. Dynamic analysis of a 15 MW semi-taut mooring floating offshore wind turbine at intermediate water depth: Investigating mooring line failure under operating and parked conditions [J]. Ocean Engineering, 2024, 312: 119108.
[25]
Li J W, Zuo H L, Zuo J J, et al. Study on the mooring systems attaching clump weights and heavy chains for improving the typhoon resistance of floating offshore wind turbines [J]. Ocean Engineering, 2024, 311: 118734.
[26]
齐磊, 黄冬明, 霍存锋, 等. 张力腿平台系泊运动响应敏感性分析 [J]. 船舶工程, 2020, 42(1): 122‒127.
Qi L, Huang D M, Huo C F, et al. Sensitivity analysis on motion response of moored TLP [J]. Ship Engineering, 2020, 42(1): 122‒127.
[27]
温斌荣, 田新亮, 李占伟, 等. 大型漂浮式风电装备耦合动力学研究: 历史、进展与挑战 [J]. 力学进展, 2022, 52(4): 731‒808.
Wen B R, Tian X L, Li Z W, et al. Coupling dynamics of floating wind turbines: History, progress and challenges [J]. Advances in Mechanics, 2022, 52(4): 731‒808.
[28]
陈嘉豪, 裴爱国, 马兆荣, 等. 海上漂浮式风机关键技术研究进展 [J]. 南方能源建设, 2020, 7(1): 8‒20.
Chen J H, Pei A G, Ma Z R, et al. A review of the key technologies for floating offshore wind turbines [J]. Southern Energy Construction, 2020, 7(1): 8‒20.
[29]
Bae Y H, Kim M H. Rotor-floater-tether coupled dynamics including second-order sum‒frequency wave loads for a mono-column-TLP-type FOWT (floating offshore wind turbine) [J]. Ocean Engineering, 2013, 61: 109‒122.
[30]
Koragappa P, Verdin P G. Design and optimisation of a 20 MW offshore wind turbine blade [J]. Ocean Engineering, 2024, 305: 117975.
[31]
López-Queija J, Jugo J, Tena A, et al. Floating offshore wind turbine nonlinear model predictive control optimisation method [J]. Ocean Engineering, 2024, 314: 119754.
[32]
Saghi H, Ma C, Zi G. Bidirectional tuned liquid dampers for stabilizing floating offshore wind turbine substructures [J]. Ocean Engineering, 2024, 309: 118553.
[33]
Zhang W Z, Calderon-Sanchez J, Duque D, et al. Computational fluid dynamics (CFD) applications in floating offshore wind turbine (FOWT) dynamics: A review [J]. Applied Ocean Research, 2024, 150: 104075.
[34]
Yeter B, Garbatov Y. Structural integrity assessment of fixed support structures for offshore wind turbines: A review [J]. Ocean Engineering, 2022, 244: 110271.
[35]
Yu Q F, Xu J. Fatigue reliability assessment of floating offshore wind turbines under correlated wind-wave-current loads [J]. Ocean Engineering, 2024, 313: 119442.
[36]
Zhang Z L. Optimal tuning of the tuned mass damper (TMD) for rotating wind turbine blades [J]. Engineering Structures, 2020, 207: 110209.
[37]
Yao J J, Jin X, Yue Y, et al. Investigation on vibration control of TetraSpar floating offshore wind turbine [J]. Ocean Engineering, 2024, 311: 118934.
[38]
Luo Y F, Sun H X, Hall L, et al. Vibration control for a semi-submersible floating offshore wind turbine with optimal ultra-low frequency electromagnetic tuned inerter-mass dampers [J]. Structures, 2024, 63: 106296.
[39]
Kim D, Bae Y H, Park S. Design strategy for resonance avoidance to improve the performance of tension leg platform-type floating offshore wind turbines [J]. Ocean Engineering, 2024, 306: 118080.
[40]
López-Queija J, Robles E, Jugo J, et al. Review of control technologies for floating offshore wind turbines [J]. Renewable and Sustainable Energy Reviews, 2022, 167: 112787.
[41]
Stehly T, Beiter P, Duffy P. 2019 Cost of wind energy review [R]. Golden: National Renewable Energy Laboratory, 2020.
[42]
唐友刚, 张素侠, 张若瑜, 等. 深海系泊系统动力特性研究进展 [J]. 海洋工程, 2008, 26(1): 120‒126.
Tang Y G, Zhang S X, Zhang R Y, et al. Advance of study on dynamic characters of mooring systems in deep water [J]. The Ocean Engineering, 2008, 26(1): 120‒126.
[43]
Paulling J R, Webster W C. A consistent, large-amplitude analysis of the coupled response of a tlp and tendon system [R]. New York: International Offshore Mechanics and Arctic Engineering. Symposium, 1986.
[44]
Wang J R, He C L, Fu D F, et al. An out-of-plane bending fatigue assessment approach for offshore mooring chains considering the real-time updating of interlink bending stiffness [J]. Journal of Marine Science and Engineering, 2024, 12(1): 131.
[45]
He C L, Sun T, Zhang Z L, et al. Numerical investigation on the second-order sum-frequency wave forces induced mooring fatigue of a 15 MW TLP FOWT [J]. Ocean Engineering, 2025, 322: 120463.
[46]
Taninoki R, Abe K, Sukegawa T, et al. Dynamic cable system for floating offshore wind power generation [J]. SEI Technical Review, 2017, 84: 53‒58.
[47]
姜磊, 高景晖, 钟力生, 等. 远海漂浮式海上风电平台用动态海缆的发展 [J]. 高压电器, 2022, 58(1): 1‒11.
Jiang L, Gao J H, Zhong L S, et al. Development of dynamic submarine cable for offshore floating wind power platforms [J]. High Voltage Apparatus, 2022, 58(1): 1‒11.
[48]
Rentschler M U T, Adam F, Chainho P. Design optimization of dynamic inter-array cable systems for floating offshore wind turbines [J]. Renewable and Sustainable Energy Reviews, 2019, 111: 622‒635.
[49]
Wijaya M R A, Adiputra R, Prabowo A R, et al. Characterization of the applied materials on floating offshore wind turbine members: A review on the current state [J]. Procedia Structural Integrity, 2023, 48: 41‒49.
[50]
Rui S J, Zhou Z F, Gao Z, et al. A review on mooring lines and anchors of floating marine structures [J]. Renewable and Sustainable Energy Reviews, 2024, 199: 114547.
[51]
董飞飞, 陈海焱, 张天龙, 等. 深远海域海上风电发展分析与建议 [J]. 中国工程咨询, 2024 (2): 63‒66.
Dong F F, Chen H Y, Zhang T L, et al. Analysis and suggestions on the development of offshore wind power in deep sea area [J]. China Engineering Consultants, 2024 (2): 63‒66.
[52]
雒德宏. 我国海上风电发展现状及对策建议 [J]. 水电与新能源, 2022, 36(11): 76‒78.
Luo D H. Current situation and suggestions of offshore wind power development in China [J]. Hydropower and New Energy, 2022, 36(11): 76‒78.
[53]
蒋运和. 浮式风电施工技术现状及分析 [J]. 船舶物资与市场, 2024, 32(1): 85‒88.
Jiang Y H. Present situation and analysis of floating wind power construction technology [J]. Marine Equipment/Materials & Marketing, 2024, 32(1): 85‒88.
[54]
Hong S, McMorland J, Zhang H X, et al. Floating offshore wind farm installation, challenges and opportunities: A comprehensive survey [J]. Ocean Engineering, 2024, 304: 117793.
[55]
Domingos D F, Atzampou P, Meijers P C, et al. Full-scale measurements and analysis of the floating installation of an offshore wind turbine tower [J]. Ocean Engineering, 2024, 310: 118670.
[56]
何佳龙, 李祥, 喻葭临, 等. 漂浮式海上风电施工关键技术应用研究进展 [J]. 水力发电, 2023, 49(12): 108‒111.
He J L, Li X, Yu J L, et al. Progress on the application of key technologies in floating offshore wind power construction [J]. Water Power, 2023, 49(12): 108‒111.
[57]
Gao S, Wang D, Lei Y, et al. Comparative study of coupled and uncoupled analysis of semi-submersible floating offshore wind turbines [R]. Shanghai: Comparative Study of Coupled and Uncoupled Analysis of Semi-Submersible Floating Offshore Wind Turbines, 2022.
[58]
Xu X, Srinil N. Dynamic response analysis of spar-type floating wind turbines and mooring lines with uncoupled vs coupled models [R]. St. John's: ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering, 2015.
[59]
Kim H, Boo S Y. Coupled and uncoupled analysis of Y-wind semi wind turbine foundation [R]. Houston: SNAME 23rd Offshore Symposium, 2018.
[60]
Jonkman B J, Jonkman J M. FAST v8.16.00a-bjj user's guide [R]. Golden: National Renewable Energy Laboratory, 2016.
[61]
Zhang Y M, Liu H X. Coupled dynamic analysis on floating wind farms with shared mooring under complex conditions [J]. Ocean Engineering, 2023, 267: 113323.
[62]
Mousavi Z, Varahram S, Ettefagh M M, et al. A digital twin-based framework for damage detection of a floating wind turbine structure under various loading conditions based on deep learning approach [J]. Ocean Engineering, 2024, 292: 116563.
[63]
胡阳, 王蔚然, 房方, 等. 风电机组运行动态数字孪生建模及半物理仿真 [J]. 系统仿真学报, 2024, 36(3): 636‒648.
Hu Y, Wang W R, Fang F, et al. Dynamic digital twin modelling and semi-physical simulation of wind turbine operation [J]. Journal of System Simulation, 2024, 36(3): 636‒648.
[64]
李志川, 高敏, 齐磊, 等. 漂浮式风电开发技术研究综述 [J]. 船舶工程, 2023, 45(10): 153‒160, 165.
Li Z C, Gao M, Qi L, et al. Review of floating wind power development technology research [J]. Ship Engineering, 2023, 45(10): 153‒160, 165.
[65]
Zeng X M, Shao Y L, Feng X Y, et al. Nonlinear hydrodynamics of floating offshore wind turbines: A review [J]. Renewable and Sustainable Energy Reviews, 2024, 191: 114092.
Funding
Funding project: Chinese Academy of Engineering project "Research on the Development Strategy of China's Offshore Ultra Large Floating Engineering"(2023-XBZD-22); Open Fund Project of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(CCL2024RCPS0252KQN)
AI Summary AI Mindmap
PDF(1456 KB)

Accesses

Citations

Detail

Sections
Recommended

/