
Exploration of New Operational Models and Technologies for the Synergistic Development of Deep-Sea Mining and Carbon Sequestration
Xuguang Chen, Xian Zhang, Ning Ma, Xixi Liu, Anqi Xie, Fengpeng Zhang, Rui Lyu
Exploration of New Operational Models and Technologies for the Synergistic Development of Deep-Sea Mining and Carbon Sequestration
The ocean harbors abundant solid minerals and is the world’s largest carbon sink with vast carbon sequestration potentials. Exploring the synergistic development of deep-sea mining and carbon sequestration is of significant importance for supporting China’s green and low-carbon transformation in deep-sea mining, as well as enhancing its influence in the field of ocean development and governance. This study summarizes the development status and trends of deep-sea mining operational models, focusing on the efficient, green, and low-carbon development of deep-sea mineral resources. It proposes synergistic operations that integrate deep-sea mining with marine carbon sequestration, creating a dual-industry collaborative development model. From the perspectives of feasibility, synergy, and economic viability, the competitiveness of a "deep-sea mining + carbon sequestration" model is analyzed. Breakthrough directions and technology development pathways are proposed, including efficient integration of deep-sea mining and carbon sequestration systems, environmental impact monitoring, carbon footprint tracing, and collaborative operation equipment. Research findings indicate that CO2 jets in deep-sea mining environments exhibit a collection performance comparable to water jets, along with better environmental friendliness and lower risks of carbon sequestration leakage. Deep-sea mining and marine carbon sequestration show high complementarity in terms of operational equipment and space, with no interference in their operational cycles. This industrial collaborative development model can improve the profitability of both marine carbon sequestration and deep-sea mining. To promote the synergistic development of these two industries, it is essential to accelerate breakthroughs in core deep-sea technologies and equipment, establish a complete industrial chain and clusters, and foster the comprehensive development of compound talent teams, technical equipment, and economic benefits in deep-sea mining and marine carbon sequestration.
carbon peaking and carbon neutrality / deep-sea mining / marine carbon sequestration / technical synergy / technology development pathway
[1] |
王国荣, 黄泽奇, 周守为, 等. 深海矿产资源开发装备现状及发展方向 [J]. 中国工程科学, 2023, 25(3): 1‒12.
Wang G R, Huang Z Q, Zhou S W, et al. Current status and development direction of deep-sea mineral resource exploitation equipment [J]. Strategic Study of CAE, 2023, 25(3): 1‒12.
|
[2] |
王国荣, 黄泽奇, 周守为, 等. 我国海洋退役油气平台低碳化改建方案构想 [J]. 中国工程科学, 2024, 26(4): 245‒258.
Wang G R, Huang Z Q, Zhou S W, et al. Proposal for low-carbon transformation of decommissioned offshore oil and gas platforms in China [J]. Strategic Study of CAE, 2024, 26(4): 245‒258.
|
[3] |
陈旭光, 寇海磊, 牛小东, 等. 深海水下技术装备发展研究 [J]. 中国工程科学, 2024, 26(2): 1‒14.
Chen X G, Kou H L, Niu X D, et al. Development of deep-sea underwater technology and equipment [J]. Strategic Study of CAE, 2024, 26(2): 1‒14.
|
[4] |
康娅娟, 刘少军. 深海采矿技术与装备研究进展及系统方案综述 [J]. 机械工程学报, 2023, 59(20): 325‒337.
Kang Y J, Liu S J. Review on the technology and equipment progress and the system scheme of deep-sea mining [J]. Journal of Mechanical Engineering, 2023, 59(20): 325‒337.
|
[5] |
董敬明, 刘子飞, 陈丽梅. 我国海洋碳汇交易政策、实践及展望 [J]. 中国科学院院刊, 2024, 39(3): 519‒527.
Dong J M, Liu Z F, Chen L M. Trading policy, practice and prospect on marine carbon sequestration in China [J]. Bulletin of Chinese Academy of Sciences, 2024, 39(3): 519‒527.
|
[6] |
王科, 黄杰, 陈召, 等. 海上CCS/CCUS技术进展与分析 [J]. 石油化工应用, 2024, 43(10): 4‒8.
Wang K, Huang J, Chen Z, et al. Progress and analysis of offshore CCS/CCUS technology [J]. Petrochemical Industry Application, 2024, 43(10): 4‒8.
|
[7] |
国际深海矿产资源的开发技术装备发展概况 [J]. 金属材料与冶金工程, 2015, 43(4): 58‒60.
General situation of international deep-sea mineral resources development technology and equipment development [J]. Metal Materials and Metallurgy Engineering, 2015, 43(4): 58‒60.
|
[8] |
田先德, 杨锦坤, 韩春花, 等. 国际海域矿产资源勘探与开采技术现状与展望 [J]. 海洋信息, 2021, 36(2): 28‒32.
Tian X D, Yang J K, Han C H, et al. The progress and prospects of deep-sea mineral resources exploration and exploitation [J]. Marine Information, 2021, 36(2): 28‒32.
|
[9] |
杨高胜, 陈丹东, 李文豪, 等. 基于管道水力提升式采矿系统的深海采矿船总体设计研究 [J]. 船舶工程, 2019, 41(1): 23‒27, 33.
Yang G S, Chen D D, Li W H, et al. Study on the overall design of deep-sea mining vessel based on pipeline hydraulic lifting mining system [J]. Ship Engineering, 2019, 41(1): 23‒27, 33.
|
[10] |
Cheng Y R, Dai Y, Zhang Y Y, et al. Status and prospects of the development of deep-sea polymetallic nodule-collecting technology [J]. Sustainability, 2023, 15(5): 4572.
|
[11] |
中国可持续发展研究会海洋资源开发技术与装备专业委员会, 长沙矿冶研究院. 面向2035年的中国深海矿产资源开发及利用技术发展路线图 [M]. 北京: 中国可持续发展研究会海洋资源开发技术与装备专业委员会, 长沙矿冶研究院, 2024.
Ocean Resources Development Technology and Equipment Professional Committee of Chinese Society for Sustainable Development, China Research Institution of Mining and Metallurgy Co., Ltd. Roadmap for the development and utilization technology of deep-sea mineral resources in China [M]. Beijing: Ocean Resources Development Technology and Equipment Professional Committee of Chinese Society for Sustainable Development, China Research Institution of Mining and Metallurgy Co., Ltd., 2024.
|
[12] |
邹丽, 孙佳昭, 孙哲, 等. 我国深海矿产资源开发核心技术研究现状与展望 [J]. 哈尔滨工程大学学报, 2023, 44(5): 708‒716.
Zou L, Sun J Z, Sun Z, et al. Deep-sea mining core technology in China: Current situation and prospects [J]. Journal of Harbin Engineering University, 2023, 44(5): 708‒716.
|
[13] |
杨建民, 刘磊, 吕海宁, 等. 我国深海矿产资源开发装备研发现状与展望 [J]. 中国工程科学, 2020, 22(6): 1‒9.
Yang J M, Liu L, Lyu H N, et al. Deep-sea mining equipment in China: Current status and prospect [J]. Strategic Study of CAE, 2020, 22(6): 1‒9.
|
[14] |
金永平, 董向阳, 万步炎, 等. 深海金属采矿装备与技术发展现状及分析 [J]. 煤炭学报, 2024, 49(8): 3316‒3334.
Jin Y P, Dong X Y, Wan B Y, et al. Research status and analysis of deep-sea metal mining equipment and technologies [J]. Journal of China Coal Society, 2024, 49(8): 3316‒3334.
|
[15] |
Huijbregts M A J, Steinmann Z J N, Elshout P M F, et al. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level [J]. The International Journal of Life Cycle Assessment, 2017, 22(2): 138‒147.
|
[16] |
Heinrich L, Koschinsky A, Markus T, et al. Quantifying the fuel consumption, greenhouse gas emissions and air pollution of a potential commercial manganese nodule mining operation [J]. Marine Policy, 2020, 114: 103678.
|
[17] |
Ramboll I M S. Analysis of the economic benefits of developing commercial deep sea mining operations in regions where Germany has exploration licences of the international seabed authority, as well as compilation and evaluation of implementation options with a focus on the performance of a pilot mining test [R]. Hamburg: Hamburg Institute of International Economics, 2016.
|
[18] |
何林漪, 付旭辉, 罗媛媛, 等. 液态CO2射流与水射流相变特征对比分析 [R]. 重庆: 第三十三届全国水动力学研讨会, 2022.
He L Y, Fu S H, Luo Y Y, et al. Comparative analysis of phase change characteristics of liquid CO2 jet and water jet [R]. Chongqing: The 33rd National Symposium on Hydrodynamics, 2022.
|
[19] |
周守为, 李清平, 朱军龙, 等. CO2海洋封存的思考与新路径探索 [J]. 天然气工业, 2024, 44(4): 1‒10, 199.
Zhou S W, Li Q P, Zhu J L, et al. Consideration on CO2 marine storage and exploration of new paths [J]. Natural Gas Industry, 2024, 44(4): 1‒10, 199.
|
[20] |
Luo J S, Xie Y C, Hou M Z, et al. Advances in subsea carbon dioxide utilization and storage [J]. Energy Reviews, 2023, 2(1): 100016.
|
[21] |
Furre A K, Eiken O, Alnes H, et al. 20 years of monitoring CO2-injection at Sleipner [J]. Energy Procedia, 2017, 114: 3916‒3926.
|
[22] |
Baklid A, Korbol R, Owren G. Sleipner vest CO2 disposal, CO2 injection into a shallow underground aquifer [R]. Denver: SPE Annual Technical Conference and Exhibition, 1996.
|
[23] |
Xinhua. China's first million-ton offshore carbon capture and storage project goes into operation [EB/OL]. (2023-06-01)[2024-07-01]. https://english.www.gov.cn/news/202306/01/content_WS647822e3c6d0868f4e8dc8d6.html.
|
[24] |
Hua X. China focus: China achieves breakthrough as million-tonne offshore carbon storage project begins operations [EB/OL]. (2023-06-02)[2024-06-11]. https://english.news.cn/20230602/b3abe474eb164449a1c4dbb2b4e3c576/c.html.
|
[25] |
柳波, 高硕, 许振强, 等. 海洋直接注入CO2封存技术方法综述 [J]. 地质论评, 2023, 69(4): 1449‒1464.
Liu B, Gao S, Xu Z Q, et al. A review of CO2 sequestration technology by direct injection in the ocean [J]. Geological Review, 2023, 69(4): 1449‒1464.
|
[26] |
Sval'nov V N, Alekseeva T N. Characteristics of the grain-size composition of deep-water oceanic sediments [J]. Lithology and Mineral Resources, 2006, 41(3): 201‒214.
|
[27] |
Tabata S. The general circulation of the Pacific Ocean and a brief account of the oceanographic structure of the North Pacific Ocean part I—Circulation and volume transports [J]. Atmosphere, 1975, 13(4): 133‒168.
|
[28] |
杨旅涵, 施泽明, 吴蒙, 等. 碳封存技术研究进展 [J]. 中国煤炭地质, 2023, 35(6): 44‒50.
Yang L H, Shi Z M, Wu M, et al. Research progress of carbon sequestration [J]. Coal Geology of China, 2023, 35(6): 44‒50.
|
[29] |
Nasr-Azadani M M, Meiburg E. Turbidity currents interacting with three-dimensional seafloor topography [J]. Journal of Fluid Mechanics, 2014, 745: 409‒443.
|
[30] |
Wang H Z, Li G S, Tian S C, et al. Flow field simulation of supercritical carbon dioxide jet: Comparison and sensitivity analysis [J]. Journal of Hydrodynamics, 2015, 27(2): 210‒215.
|
[31] |
Teng H, Yamasaki A, Shindo Y. Effect of hydrates on instability of liquid CO2 jets in the deep ocean [J]. Energy, 1997, 22(2/3): 273‒278.
|
[32] |
Deepak C R, Ramji S, Ramesh N R, et al. Development and testing of underwater mining systems for long term operations using flexible riser concept [R]. Lisbon: the Seventh ISOPE Ocean Mining Symposium, 2007.
|
[33] |
Gu Y H, Liu X J, Li Y, et al. Feasibility analysis of liquid CO2 injection and sequestration as hydrates in South China Sea marine sediments over 100 years [J]. Applied Energy, 2025, 380: 125068.
|
[34] |
边琳尧. 深海矿产资源开发的技术经济分析——以南太平洋彭林海盆多金属结核开采为例 [D]. 厦门: 厦门大学(硕士学位论文), 2021.
Bian L Y. Techno-economic analysis on exploitation of deep-sea mineral resources—Taking the exploitation of polymetallic nodules in Peng Lin basin of south Pacific as an example [D]. Xiamen: Xiamen University (Master's thesis), 2021.
|
[35] |
何亮. 将二氧化碳"扣"在海底"巨碗"下 [N]. 科技日报, 2023-07-03(08).
He L. Capture carbon dioxide under the underwater "giant bowl" [N]. Science and Technology Daily, 2023-07-03(08).
|
[36] |
费龙, 郑成荣, 金强, 等. 深海多金属结核开采装备技术发展综述 [J]. 船舶, 2024, 35(6): 1‒14.
Fei L, Zheng C R, Jin Q, et al. Overview of the development of equipment and technology for deep-sea polymetallic nodule mining [J]. Ship & Boat, 2024, 35(6): 1‒14.
|
[37] |
河北省节能协会. 浅谈"双碳"背景下的二氧化碳捕集利用与封存 [EB/OL]. (2024-08-28)[2025-01-13]. https://mp.weixin.qq.com/s?__biz=MzIzMDEzNjg1MQ==&mid=2247569664&idx=5&sn=0ee3d72740c36f01f3425a65174a4a7e&chksm=e8bb9c7cdfcc156a73d171de02b37436b03aa7e0a5518a134ec5b51f26efbaaf495e5a8d801c&scene=27.
Hebei Energy Conservation Association. A brief discussion on carbon dioxide capture, utilization, and storage under the background of "dual carbon" [EB/OL]. (2024-08-28)[2025-01-13]. https://mp.weixin.qq.com/s?__biz=MzIzMDEzNjg1MQ==&mid=2247569664&idx=5&sn=0ee3d72740c36f01f3425a65174a4a7e&chksm=e8bb9c7cdfcc156a73d171de02b37436b03aa7e0a5518a134ec5b51f26efbaaf495e5a8d801c&scene=27.
|
[38] |
张海滨, 卢迪, 王永昌, 等. 二氧化碳海洋封存的技术和研究现状 [J]. 海洋科学, 2024, 48(4): 108‒121.
Zhang H B, Lu D, Wang Y C, et al. Technology and research progress with regard to CO2 ocean storage [J]. Marine Sciences, 2024, 48(4): 108‒121.
|
/
〈 |
|
〉 |