Development of China's Microbial Energy Industry

Yang Gu, Bingzhi Li, Yanan Li, Lihui Zhang, He Huang

Strategic Study of CAE ›› 2025

PDF(782 KB)
PDF(782 KB)
Strategic Study of CAE ›› 2025 DOI: 10.15302/J-SSCAE-2025.02.037

Development of China's Microbial Energy Industry

Author information +
History +

Abstract

With the progressive depletion of fossil fuel resources and intensifying global environmental challenges, microbial energy has emerged as a sustainable and clean energy substitute, playing a pivotal role in safeguarding national energy security and advancing the green transformation of the socio-economic landscape. This study provides a comprehensive analysis of the current status, technological breakthroughs, and challenges of China's microbial energy industry, highlighting its potential to optimize energy structures and promote sustainable development. While China has achieved milestones in microbial fuel cell, lipid production, and ethanol technologies, critical challenges remain, including feedstock diversification, core technological bottlenecks, and energy conversion efficiency. To achieve high-quality development of the industry, China must prioritize policy-guided initiatives, accelerate research and development of key technologies, and establish efficient industrial eco-clusters. Specifically, high-quality development should focus on: (1) technological innovation, such as metabolic pathway optimization and electrochemical coupling; (2) industrial scalability, including cost reduction and supply chain optimization; and (3) policy support, encompassing legal frameworks and financial incentives. Through these efforts, microbial energy is expected to become a vital component of China's new energy system, supporting the national goals of carbon peaking and carbon neutrality while contributing to global energy sustainability.

Graphical abstract

Keywords

microbial energy industry / energy security / green transformation / industrial eco-clusters / synthetic biology

Cite this article

Download citation ▾
Yang Gu, Bingzhi Li, Yanan Li, Lihui Zhang, He Huang. Development of China's Microbial Energy Industry. Strategic Study of CAE, 2025 https://doi.org/10.15302/J-SSCAE-2025.02.037

References

[1]
中华人民共和国国务院‍. 国务院关于印发"十三五"国家战略性新兴产业发展规划的通知 [EB/OL]‍. (2016-11-29)‍[2025-02-10]‍. http://www.gov.cn/zhengce/content/2016-12/19/content_5150090.htm.
State Council of the People's Republic of China‍. State Council's circular on the publication of the national strategic emerging industries development plan for the 13th Five-Year Plan [EB/OL]‍. (2016-11-29)‍[2025-02-10]‍. http://www‍.gov‍.cn/zhengce/content/2016-12/19/content_5150090‍.htm‍.
[2]
Dai Y F, You L C, Chilkoti A‍. Engineering synthetic biomolecular condensates [J]‍. Nature Reviews Bioengineering, 2023, 1(7): 466‒480‍.
[3]
Fondi M, Liò P‍. Multi-omics and metabolic modelling pipelines: Challenges and tools for systems microbiology [J]‍. Microbiological Research, 2015, 171: 52‒64‍.
[4]
Wang Y X, Hou N N, Liu X L, et al‍. Advances in interfacial engineering for enhanced microbial extracellular electron transfer [J]‍. Bioresource Technology, 2022, 345: 126562‍.
[5]
高亚男, 王志文‍‍. 生物柴油作为替代燃料的发展趋势 [J]‍. 石油化工技术与经济, 2025, 41(1): 6‒10‍.
Gao Y N, Wang Z W‍. The current development status of biodiesel as alternative fuel [J]‍. Technology & Economics in Petrochemicals, 2025, 41(1): 6‒10‍.
[6]
宁艳春, 马迎雪, 伊凤, 等‍. 燃料乙醇技术发展现状及建议 [J]‍. 化学工业, 2024, 42(3): 58‒61‍.
Ning Y C, Ma Y X, Yi F, et al‍. Technology development situation and suggestions of fuel ethanol [J]‍. Chemical Industry, 2024, 42(3): 58‒61‍.
[7]
付尹宣, 桂双林, 廖梦垠, 等‍. 混合厌氧发酵产沼气研究进展 [J]‍. 能源研究与管理, 2016 (1): 11‒14‍.
Fu Y X, Gui S L, Liao M Y, et al‍. Research advances in anaerobic co-digestion of biogas [J]‍. Energy Research and Management, 2016 (1): 11‒14‍.
[8]
蒋甜, 张超, 刘会洲‍. 微生物燃料电池发展态势分析 [J]‍. 中国生物工程杂志, 2020, 40(S1): 189‒197‍.
Jiang T, Zhang C, Liu H Z‍. Development trend analysis of microbial fuel cells [J]‍. China Biotechnology, 2020, 40(S1): 189‒197‍.
[9]
BCC Research‍. 微生物产品: 技术、应用、全球市场 [EB/OL]‍. (2018-07-10)‍[2025-02-10]. https://www‍.giichinese‍.com‍.cn/report/bc180728-glob-microbial-prod‍.html‍.
BCC Research‍. Microbial products: Technologies, applications and global markets [EB/OL]‍. (2018-07-10)‍[2025-02-10]‍. https://www‍.giichinese‍.com‍.cn/report/bc180728-glob-microbial-prod‍. html‍.
[10]
陈琳, 钱秀娟, 章晓宇, 等‍. 产油酵母合成微生物油脂的研究现状及展望 [J]‍. 生物加工过程, 2020, 18(6): 732‒740‍.
Chen L, Qian X J, Zhang X Y, et al‍. Microbial lipid production by oleaginous yeasts: A review [J]‍. Chinese Journal of Bioprocess Engineering, 2020, 18(6): 732‒740‍.
[11]
郭姝媛, 张倩楠, 姑丽克孜·买买提热夏提, 等‍. 液体生物燃料合成与炼制的研究进展 [J]‍. 合成生物学, 2025, 6(1): 18‒44.
Guo S Y, Zhang Q N, Gulikezi Maimaitirexiati‍, et al. Advances in microbial production of liquid biofuels [J]‍. Synthetic Biology Journal, 2025, 6(1): 18‒44‍.
[12]
陈玉炜, 聂小安‍. 微生物油脂制取生物燃料研究进展 [J]‍. 当代化工研究, 2022 (5): 147‒149‍.
Chen Y W, Nie X A‍. Research progress of biofuel from microbial oils [J]‍. Modern Chemical Research, 2022 (5): 147‒149‍.
[13]
李秀娟, 王明慧, 乔杰, 等‍. 先进生物技术在纤维素燃料乙醇中的应用及展望 [J]‍. 生物加工过程, 2023, 21(5): 554‒563‍.
Li X J, Wang M H, Qiao J, et al‍. Applications and perspectives of advanced biotechnology in cellulosic fuel ethanol [J]‍. Chinese Journal of Bioprocess Engineering, 2023, 21(5): 554‒563‍.
[14]
张汪强‍. 碳中和专题报告: 生物基行业, 潜力巨大的新蓝海 [EB/OL]‍. (2021-01-06)‍[2025-02-10]. https://www‍.vzkoo‍.com/document/249cb365e 62d768a81643b07a276e861‍.html‍.
Zhang W Q‍. Special report on carbon neutrality: Bio-based industry, a new blue ocean with huge potential [EB/OL]‍. (2021-01-06)[2025-02-10]‍. https://www‍.vzkoo‍.com/document/249cb365e62d768a81643b07a 276e861‍.html‍.
[15]
黄瑞荣, 盛宣才, 任开磊, 等‍. 生物能源发展现状与战略思考 [J]‍. 林业机械与木工设备, 2021, 49(6): 15‒20‍.
Huang R R, Sheng X C, Ren K L, et al‍. Development status and strategic consideration bioenergy [J]‍. Forestry Machinery & Woodworking Equipment, 2021, 49(6): 15‒20‍.
[16]
王林‍. IEA: 生物燃料是交通脱碳现实选择 [N]‍. 中国能源报, 2024-03-18(07)‍.
Wang L‍. IEA: Biofuels are a realistic choice for decarbonizing transportation [N]‍. China Energy News, 2024-03-18(07)‍.
[17]
吴仁智, 陈屿川, 覃丽垚, 等‍. 木糖产乙醇微生物的育种研究进展 [J]‍. 广西科学院学报, 2023, 39(3): 230‒242‍.
Wu R Z, Chen Y C, Qin L Y, et al‍. Research progress on breeding of microorganisms for producing ethanol from xylose [J]‍. Journal of Guangxi Academy of Sciences, 2023, 39(3): 230‒242‍.
[18]
武凤霞, 朱会会, 肖强, 等‍. 不同微生物变温共培养对秸秆乙醇发酵的影响 [J/OL]‍. 四川农业大学学报, 1‒12[2025-02-10]‍. https://link‍.cnki‍.net/doi/10‍.16036/j‍.issn‍.1000-2650‍.202204142‍.
Wu F X, Zhu H H, Xiao Q, et al‍. Effects of co-culture of different microorganisms at variable temperature on ethanol fermentation of rice straw [J/OL]‍. Journal of Sichuan Agricultural University,1‒12[2025-02-10]. https://link‍.cnki‍.net/doi/10‍.16036/j‍.issn‍.1000-2650‍.202204142‍.
[19]
国家发展和改革委员会‍. 国家能源局关于印发"十四五"现代能源体系规划的通知 [EB/OL]‍. (2022-01-29)‍[2025-02-10]‍. https://www‍.gov‍.cn/zhengce/zhengceku/2022-03/23/content_5680759‍.htm‍.
National Development and Reform Commission‍. National Energy Administration's circularon the publication of the modern energy system development plan for the 14th Five-Year Plan [EB/OL]‍. (2022-01-29)‍[2025-02-10]‍. https://www‍.gov‍.cn/zhengce/zhengceku/2022-03/23/content_5680759‍.htm‍.
[20]
人民论坛"特别策划"组‍. 生物经济的时代价值及前景展望 [J]‍. 人民论坛, 2022 (17): 10‒11‍.
Special Planning Group of People's Tribune‍.The times value and prospect of bio-economy [J]‍. People's Tribune, 2022 (17): 10‒11‍.
[21]
观研产经研究院‍. 中国微生物能源行业现状深度调研与投资前景分析报告(2022—2029年) [EB/OL]‍. (2022-03-30)‍[2025-02-10]‍. https://www‍.chinabaogao‍.com/baogao/202203/584822‍.html‍.
Guanyan Institute of Industrial Economics‍. Analysis report on the current situation and investment prospect of China's microbial energy industry: In - depth research on the industry situation (2022—2029) [EB/OL]‍. (2022-03-30)‍[2025-02-10]‍. https://www‍.chinabaogao‍.com/baogao/202203/584822‍.html‍.
[22]
邓勇, 陈方, 王春明, 等‍. 美国生物质资源研究规划与举措分析及启示 [J]‍. 中国生物工程杂志, 2010, 30(1): 111‒116‍.
Deng Y, Chen F, Wang C M, et al‍. Plans and actions on biomass research in USA [J]‍. China Biotechnology, 2010, 30(1): 111‒116‍.
[23]
United States Department of Energy‍. DOE announces $178 Million to advance bioenergy technology [EB/OL]‍. (2022-09-13)‍[2025-02-10]‍. https://www‍.energy‍.gov/articles/doe-announces-178-million-advance-bioenergy-technology‍.
[24]
郭楷模‍. 欧洲能源研究联盟发布生物能源战略研究与创新议程 [EB/OL]‍. (2019-08-05)‍[2025-02-10]. https://stm.las.ac.cn/reportFront/getIssueeditDetail.htm?uuid=c5c1b3ba4c3883e63b3ff662cc9f3d6c&issueidDetail=4601&controlType=91426154.pdf.
Guo K M‍. The European Energy Research Alliance publishes a strategic research and innovation agenda for bioenergy [EB/OL]‍. (2019-08-05)‍[2025-02-10]‍. https://stm.las.ac.cn/reportFront/getIssueeditDetail.htm?uuid=c5c1b3ba4c3883e63b3ff662cc9f3d6c&issueidDetail=4601&controlType=91426154.pdf.
[25]
European Technology and Innovation Platform Bioenergy‍. Strategic research and innovation agenda 2023 [EB/OL]‍. (2023-09-27)‍[2025-02-10]‍. https://new‍.etipbioenergy‍.eu/wp-content/uploads/2024/07/ETIP_SRIA_2023‍.pdf‍.
[26]
新能源网‍. 英国能源发展趋势及对我启示 [EB/OL]‍. (2019-04-16)‍[2025-02-10]‍. http://www‍.china-nengyuan‍.com/exhibition/exhibition_news_137955‍.html‍.
China-nengyuan‍. British energy development trend and inspiration for me [EB/OL]‍. (2019-04-16)‍[2025-02-10]‍. http://www‍.china-nengyuan‍.com/exhibition/exhibition_news_137955‍.html‍.
[27]
Biogenic Emission Inventory System‍. Renewable energy innovation boosted by £37 million government funding across the UK‍ [EB/OL]‍. (2022-08-04)‍[2025-02-10]‍. https://www‍.gov‍.uk/government/news/renewable-energy-innovation-boosted-by-37-million-government-funding-across-the-uk‍.
[28]
郭楷模‍. 日本NEDO资助23亿日元推进生物质能技术开发 [EB/OL]‍. (2018-09-18)[2025-02-10]‍. https://stm.las.ac.cn/reportFront/getIssueeditDetail.htm?uuid=dcc6a5087428293af1d0bdd2f402fd2d&issueidDetail=2840&controlType=810442625.pdf.
Guo K M‍. Japan NEDO grants 2‍.3 billion yen to promote the development of biomass energy technology [EB/OL]‍. (2018-09-18)[2025-02-10]‍. https://stm.las.ac.cn/reportFront/getIssueeditDetail.htm?uuid=dcc6a5087428293af1d0bdd2f402fd2d&issueidDetail=2840& controlType=810442625.pdf.
[29]
中国产业发展促进会生物质能产业分会‍. 盘点世界主要经济体生物质能战略部署 [EB/OL]‍. (2022-08-23)‍[2025-02-10]‍. https://www‍.beipa‍.org‍.cn/newsinfo/4253585‍.html‍.
China Renewable Energy Development Promotion League Biogas and Bio-Energy Division‍. Take stock of the biomass energy strategic deployment of the world's major economies [EB/OL]‍. (2022-08-23)‍[2025-02-10]‍. https://www‍.beipa‍.org‍.cn/newsinfo/4253585‍.html‍.
[30]
李十中‍. 生物经济发展趋向: 构建生物食源产业与生物能源产业体系 [J]‍. 人民论坛·学术前沿, 2022 (14): 14‒26‍.
Li S Z‍. Trends in bioeconomic development: Building a biofood industry and bioenergy industry system [J]‍. Frontiers, 2022 (14): 14‒26‍.
[31]
武国庆, 薛晓舟, 闵剑, 等‍. 全球能源低碳转型下生物液体燃料产业现状与展望 [J]‍. 中国生物工程杂志, 2024, 44(1): 88‒97‍.
Wu G Q, Xue X Z, Min J, et al‍. Status and prospects of liquid biofuel industry under the background of global low-carbon energy transition [J]‍. China Biotechnology, 2024, 44(1): 88‒97‍.
[32]
王天娇, 黄伟, 施晓康‍. 对中国石油在巴西发展生物能源的思考 [J]‍. 中国能源, 2022, 44(1): 35‒42, 48‍.
Wang T J, Huang W, Shi X K‍. Reflections on the development of bio-energy by CNPC in Brazil [J]‍. Energy of China, 2022, 44(1): 35‒42, 48‍.
[33]
刘文博, 张陆彪, 冯东昕, 等‍. "地平线2020" 计划框架下中欧农业科技合作的机遇与挑战 [J]‍. 世界农业, 2014 (6): 6‒9, 23‍.
Liu W B, Zhang L B, Feng D X, et al‍. Opportunities and challenges of Sino-European agricultural science and technology cooperation under the framework of horizon 2020 plan [J]‍. World Agriculture, 2014 (6): 6‒9, 23‍.
[34]
李臣亮, 张金倩楠, 于莎, 等‍. 探索新质生产力时代背景下高校国际科技合作发展新模式 [J]‍. 科技促进发展, 2024, 20(7): 615‒621‍.
Li C L, Zhang J Q N, Yu S, et al‍. Exploration of a new mode of development of international scientific and technological cooperation among universities in the context of the era of new quality productive forces [J]‍. Science & Technology for Development, 2024, 20(7): 615‒621‍.
[35]
庄岩, 董锁成‍. "一带一路"沿线国家科技资源配置效率与国际合作模式 [J/OL]‍. 财经理论研究, 1‒13[2025-02-10]‍. https://doi.org/10.13894/j.cnki.jfet.20240924.001.
Zhuang Y, Dong S C‍. Efficiency of scientific and technological resource allocation in countries along the 'Belt and Road' and the mode of international cooperation [J]‍. Financial Theory Research: 1‒13‍[2025-02-10]. https://doi.org/10.13894/j.cnki.jfet.20240924.001.
[36]
Wu B, Wang Y W, Dai Y H, et al‍. Current status and future prospective of bio-ethanol industry in China [J]‍. Renewable and Sustainable Energy Reviews, 2021, 145: 111079‍.
[37]
晏雄鹰, 王振, 娄吉芸, 等‍. 生物燃料高效生产微生物细胞工厂构建研究进展 [J]‍. 合成生物学, 2023, 4(6): 1082‒1121‍.
Yan X Y, Wang Z, Lou J Y, et al‍. Progress in the construction of microbial cell factories for efficient biofuel production [J]‍. Synthetic Biology Journal, 2023, 4(6): 1082‒1121‍.
[38]
Liu H, Chen S L, Xu J Z, et al‍. Dual regulation of cytoplasm and peroxisomes for improved Α-farnesene production in recombinant Pichia pastoris [J]‍. ACS Synthetic Biology, 2021, 10(6): 1563‒1573‍.
[39]
钟家伟, 谭涛, 谢君, 等‍. 生物质高值能源转换技术 [J/OL]‍. 化工进展, [2025-02-10]. https://link‍.cnki‍.net/doi/10‍.16085/j‍.issn‍.1000-6613‍.2024-1879‍.
Zhong J W, Tan T, Xie J, et al‍. Technologies for high value-added valorization of biomass energy [J/OL]‍. Chemical Industry and Engineering Progress, [2025-02-10]. https://link‍.cnki‍.net/doi/10‍.16085/j‍.issn‍.1000-6613‍.2024-1879‍.
[40]
Pandya R S, Kaur T, Bhattacharya R, et al‍. Harnessing microorganisms for bioenergy with microbial fuel cells: Powering the future [J]‍. Water-Energy Nexus, 2024, 7: 1‒12‍.
[41]
Ahmed S F, Mofijur M, Islam N, et al‍. Insights into the development of microbial fuel cells for generating biohydrogen, bioelectricity, and treating wastewater [J]‍. Energy, 2022, 254: 124163‍.
[42]
Li J F, Chen Z B‍. Revitalizing microbial fuel cells: A comprehensive review on the transformative role of iron-based materials in electrode design and catalyst development [J]‍. Chemical Engineering Journal, 2024, 489: 151323‍.
[43]
赵聪媛, 张静, 陈铮, 等‍. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用 [J]‍. 化学进展, 2022, 34(2): 397‒410‍.
Zhao C Y, Zhang J, Chen Z, et al‍. Effective constructions of electro-active bacteria-derived bioelectrocatalysis systems and their applications in promoting extracellular electron transfer process [J]‍. Progress in Chemistry, 2022, 34(2): 397‒410‍.
[44]
段亮, 李世龙, 邢飞‍. 正渗透微生物燃料电池反向溶质通量和膜污染控制技术研究进展 [J]‍. 环境工程技术学报, 2023, 13(3): 1150‒1160‍.
Duan L, Li S L, Xing F‍. Technical research progress of controlling reverse solute flux and membrane fouling in osmotic microbial fuel cell [J]‍. Journal of Environmental Engineering Technology, 2023, 13(3): 1150‒1160‍.
[45]
王佳璇, 段嘉琪, 刘喆, 等‍. 藻类微生物燃料电池的构型发展及应用现状 [J]‍. 环境科学与技术, 2023, 46(4): 61‒71‍.
Wang J X, Duan J Q, Liu Z, et al‍. Configuration development and application status of algae microbial fuel cells [J]‍. Environmental Science & Technology, 2023, 46(4): 61‒71‍.
[46]
Sani A, Savla N, Pandit S, et al‍. Recent advances in bioelectricity generation through the simultaneous valorization of lignocellulosic biomass and wastewater treatment in microbial fuel cell [J]‍. Sustainable Energy Technologies and Assessments, 2021, 48: 101572‍.
[47]
李朝明, 许丹, 黄铭意, 等‍. 不同阳极设置对人工湿地 ‒ 微生物燃料电池脱氮及产能的影响 [J]‍. 环境工程技术学报, 2023, 13(1): 205‒213‍.
Li C M, Xu D, Huang M Y, et al‍. Effects of different anode settings on the performance of nitrogen removal and electrogenesis capacity in constructed wetland-microbial fuel cells [J]‍. Journal of Environmental Engineering Technology, 2023, 13(1): 205‒213‍.
[48]
鲁汭, 林莉莉, 肖恩荣, 等‍. 微生物燃料电池(MFC)型生物毒性传感器用于重金属离子检测的研究进展 [J]‍. 生态与农村环境学报, 2021, 37(1): 1‒9‍.
Lu R, Lin L L, Xiao E R, et al‍. Review of development in heavy metals monitoring with microbial fuel cell-based toxicity biosensor [J]‍. Journal of Ecology and Rural Environment, 2021, 37(1): 1‒9‍.
[49]
高慧君, 王征, 于一雷, 等‍. 微生物燃料电池人工湿地对污水氮降解及产电性能研究 [J]‍. 水生态学杂志, 2024, 45(6): 192‒203‍.
Gao H J, Wang Z, Yu Y L, et al‍. Denitrification of domestic wastewater and generation of electricity in microbial fuel cell-constructed wetland [J]‍. Journal of Hydroecology, 2024, 45(6): 192‒203‍.
[50]
Lu R, Shi T Q, Lin L, et al‍. Advances in metabolic engineering of yeasts for the production of fatty acid-derived hydrocarbon fuels [J]‍. Green Chemical Engineering, 2022, 3(4): 289‒303‍.
[51]
Robles-Iglesias R, Naveira-Pazos C, Fernández-Blanco C, et al‍. Factors affecting the optimisation and scale-up of lipid accumulation in oleaginous yeasts for sustainable biofuels production [J]‍. Renewable and Sustainable Energy Reviews, 2023, 171: 113043‍.
[52]
Kim G U, Ha G S, Kurade M B, et al‍. Integrating fermentation of Chlamydomonas mexicana by oleaginous Lipomyces starkeyi and switchable ionic liquid extraction for enhanced biodiesel production [J]‍. Chemical Engineering Journal, 2022, 446: 137285‍.
[53]
Flevaris K, Chatzidoukas C‍. Facilitating the industrial transition to microbial and microalgal factories through mechanistic modelling within the Industry 4‍.0 paradigm [J]‍. Current Opinion in Chemical Engineering, 2021, 33: 100713‍.
[54]
Jacqueline P J, Velvizhi G‍. Co-fermentation exploiting glucose and xylose utilizing thermotolerant S‍. cerevisiae of highly lignified biomass for biofuel production: Statistical optimization and kinetic models [J]‍. Biocatalysis and Agricultural Biotechnology, 2024, 58: 103197‍.
[55]
Zhu C B, Ji Y, Du X, et al‍. A smart and precise mixing strategy for efficient and cost-effective microalgae production in open ponds [J]‍. Science of The Total Environment, 2022, 852: 158515‍.
[56]
辛竹琳, 何微, 王晓梅, 等‍. 全球合成生物学专利发展格局及对中国的启示 [J]‍. 农业展望, 2023, 19(7): 105‒113‍.
Xin Z L, He W, Wang X M, et al‍. Landscape of synthetic biology based on global patents and its enlightenment to China [J]‍. Agricultural Outlook, 2023, 19(7): 105‒113‍.
[57]
Hill P, Benjamin K, Bhattacharjee B, et al‍. Clean manufacturing powered by biology: How amyris has deployed technology and aims to do it better [J]‍. Journal of Industrial Microbiology & Biotechnology, 2020, 47(11): 965‒975‍.
[58]
施慧琳, 王玥, 李祯祺, 等‍. 从专利角度分析全球酶制剂研发态势 [J]‍. 生物产业技术, 2019 (3): 5‒12‍.
Shi H L, Wang Y, Li Z Q, et al‍. Global enzymes development trend analysis from the perspective of patents [J]‍. Biotechnology & Business, 2019 (3): 5‒12‍.
[59]
李冬敏, 王慧丽, 沈乃东, 等‍. 玉米秸秆生产纤维素乙醇工艺研究 [J]‍. 当代化工, 2023, 52(9): 2180‒2185‍.
Li D M, Wang H L, Shen N D, et al‍. Research on cellulose ethanol production by corn stover [J]‍. Contemporary Chemical Industry, 2023, 52(9): 2180‒2185‍.
[60]
王涛‍. 国内外生物燃料产业发展特点及对中国的启示 [J]‍. 国际石油经济, 2024, 32(6): 51‒61‍.
Wang T‍. Development characteristics of domestic and foreign biofuel industry and implications for China [J]‍. International Petroleum Economics, 2024, 32(6): 51‒61‍.
[61]
Yusof Z, Tong Y W, Selvarajoo K, et al‍. Overcoming challenges in microalgal bioprocessing through data-driven and computational approaches [J]‍. Current Opinion in Food Science, 2025, 61: 101253‍.
[62]
Yang P Z, Jiang S Y, Lu S H, et al‍. Ethanol yield improvement in Saccharomyces cerevisiae GPD2 Delta FPS1 Delta ADH2 Delta DLD3 Delta mutant and molecular mechanism exploration based on the metabolic flux and transcriptomics approaches [J]‍. Microbial Cell Factories, 2022, 21(1): 160‍.
[63]
Kumar N, Kar S, Shukla P‍. Role of regulatory pathways and multi-omics approaches for carbon capture and mitigation in cyanobacteria [J]‍. Bioresource Technology, 2022, 366: 128104‍.
[64]
Benisch F, Boles E‍. The bacterial Entner‒Doudoroff pathway does not replace glycolysis in Saccharomyces cerevisiae due to the lack of activity of iron‒sulfur cluster enzyme 6-phosphogluconate dehydratase [J]‍. Journal of Biotechnology, 2014, 171: 45‒55‍.
[65]
Zhao J T, Li F, Cao Y X, et al‍. Microbial extracellular electron transfer and strategies for engineering electroactive microorganisms [J]‍. Biotechnology Advances, 2021, 53: 107682‍.
[66]
Ali Yaqoob A, Mohamad Ibrahim M N, Umar K, et al‍. Cellulose derived graphene/polyaniline nanocomposite anode for energy generation and bioremediation of toxic metals via benthic microbial fuel cells [J]‍. Polymers, 2021, 13(1): 135‍.
[67]
Ali Yaqoob A, Mohamad Ibrahim M N, Yaakop A S‍. Application of oil palm lignocellulosic derived material as an efficient anode to boost the toxic metal remediation trend and energy generation through microbial fuel cells [J]‍. Journal of Cleaner Production, 2021, 314: 128062‍.
[68]
Li J J, Zhang Y M, Gao T L, et al‍. A confined "microreactor" synthesis strategy to three dimensional nitrogen-doped graphene for high-performance sodium ion battery anodes [J]‍. Journal of Power Sources, 2018, 378: 105‒111‍.
[69]
Mashkour M, Rahimnejad M, Pourali S M, et al‍. Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell [J]‍. Progress in Natural Science: Materials International, 2017, 27(6): 647‒651‍.
[70]
Chouhan R S, Gandhi S, Verma S K, et al‍. Recent advancements in the development of Two-Dimensional nanostructured based anode materials for stable power density in microbial fuel cells [J]‍. Renewable and Sustainable Energy Reviews, 2023, 188: 113813‍.
[71]
Guo W, Chen Y Y, Wang J Y, et al‍. Enhanced electroactive bacteria enrichment and facilitated extracellular electron transfer in microbial fuel cells via polydopamine coated graphene aerogel anode [J]‍. Bioelectrochemistry, 2024, 160: 108769‍.
[72]
Mao J W, Zhang H Y, Chen Y, et al‍. Relieving metabolic burden to improve robustness and bioproduction by industrial microorganisms [J]‍. Biotechnology Advances, 2024, 74: 108401‍.
[73]
Basiony M, Ouyang L M, Wang D N, et al‍. Optimization of microbial cell factories for astaxanthin production: Biosynthesis and regulations, engineering strategies and fermentation optimization strategies [J]‍. Synthetic and Systems Biotechnology, 2022, 7(2): 689‒704‍.
[74]
Velvizhi G, Nair R, Goswami C, et al‍. Carbon credit reduction: A techno-economic analysis of "drop-in" fuel production [J]‍. Environmental Pollution, 2023, 316: 120507‍.
[75]
贾意久, 石雅丽‍. 生物质能源利用研究进展 [J]‍. 科技导报, 2023, 41(16): 55‒75‍.
Jia Y J, Shi Y L‍. The research progress of biomass energy utilization [J]‍. Science & Technology Review, 2023, 41(16): 55‒75‍.
[76]
贾兰琦‍. 研究生物质能源的未来展望—技术创新与市场拓展 [J]‍.中国战略新兴产业, 2024 (17): 90‒92‍.
Jia L Q‍. The future prospect of biomass energy — technological innovation and market expansion [J]‍. China Strategic Emerging Industry, 2024 (17): 90‒92‍.
[77]
杜娟, 马连营, 马爱进, 等‍. 我国微生物产业发展战略研究 [J]‍. 中国工程科学, 2021, 23(5): 51‒58‍.
Du J, Ma L Y, Ma A J, et al‍. Development strategy of microbial industry in China [J]‍. Strategic Study of CAE, 2021, 23(5): 51‒58‍.
[78]
舟丹‍. 我国生物柴油政策支持力度加大, 为行业发展保驾护航 [J]‍. 中外能源, 2023, 28(3): 83‍.
Zhou D‍. China's biodiesel policy support has been strengthened to protect the development of the industry [J]‍. Sino-Global Energy, 2023, 28(3): 83‍.
[79]
欧福永, 瞿婷‍. 我国可再生能源产业补贴制度及其调整研究 [J]‍. 国际法与比较法论丛, 2020: 217‒236‍.
Ou F Y, Qu T‍. Research on subsidy system and adjustment of renewable energy industry in China [J]‍. Essays on international law and Comparative law, 2020: 217‒236‍.
Funding
Funding project: Chinese Academy of Engineering project "Development Strategy of China's Microbial Safety and Health Industry 3"(2024-XBZD-13)
AI Summary AI Mindmap
PDF(782 KB)

Accesses

Citations

Detail

Sections
Recommended

/