
Life-Cycle Protection and Utilization of Coal Mine Water in China
Qiang Wu, Junlian Gao, Yifan Zeng, Yang Cheng
Strategic Study of CAE ›› 2025, Vol. 27 ›› Issue (2) : 184-204.
Life-Cycle Protection and Utilization of Coal Mine Water in China
Mine water is both a valuable water resource of strategic significance and a significant hidden disaster factor. Its scientific protection and efficient utilization are crucial for ensuring coal mine safety production, promoting green and low-carbon transformation of the coal industry, and contributing to the national carbon peaking and carbon neutrality goals. Based on the demand for high-quality development in China's coal industry, this study focuses on the protection and utilization of coal mine water across its full life cycle. From the perspective of systems engineering, it clarifies the implications of full life-cycle management of mine water, namely, the comprehensive management model of "source reduction, process detoxification, end-stage resource recovery, and terminal reinjection," coordinating the entire process of mine water generation, migration, utilization, and recycling. By analyzing the current development status of protection and utilization technologies for mine water in China's coal mines across the four key stages, this study identifies key challenges such as lack of technological innovation, incomplete market mechanisms, and deficiency of well-established policy frameworks and technical standards. On this basis, a strategic framework for mine water resource protection and utilization is established, guided by resource, industrial, and ecological strategies. It proposes a governance approach of source control for efficiency enhancement, treatment processes for quality improvement, comprehensive reuse for value increment, and terminal disposal for environmental capacity expansion. Additionally, five major engineering systems are systematically deployed: core technology breakthroughs, full-chain demonstrations, market-oriented production‒use synergy, ecological safety support, and intelligent management platform development. This forms a coordinated promotion pattern driven by technological innovation, supported by engineering construction, secured by market operations, safeguarded by ecological safety, and empowered by smart management. Furthermore, development suggestions are proposed, including constructing a modern governance system, achieving breakthroughs in core technologies, promoting industrial transformation and upgrading, improving standard evaluation systems, and strengthening collaborative governance mechanisms. These suggestions provide a systematic solution to support the coal industry's green transition and facilitate the transformation of mine water management from "wastewater management" to "strategic water resource utilization."
mine water / lifecycle management / source reduction / process detoxification / end-stage resource recovery / terminal reinjection
[1] |
曾一凡, 朱慧聪, 武强, 等. 我国不同类别煤层顶板水害致灾机理与防控路径 [J]. 煤炭学报, 2024, 49(3): 1539‒1555.
Zeng Y F, Zhu H C, Wu Q, et al. Disaster-causing mechanism and prevention and control path of different types of coal seam roof water disasters in China [J]. Journal of China Coal Society, 2024, 49(3): 1539‒1555.
|
[2] |
曾一凡, 朱慧聪, 武强, 等. 我国不同类别煤层底板水害致灾机理与防控远景导向 [J]. 煤炭学报, 2025, 50(2): 1073‒1099.
Zeng Y F, Zhu H C, Wu Q, et al. Disaster-causing mechanism and prevention and control vision orientation of different types of coal seam floor water disasters in China [J]. Journal of China Coal Society, 2025, 50(2): 1073‒1099.
|
[3] |
Wang X, Zhang C, Yuan J, et al. Life cycle assessment of mine water resource utilization in China: A case study of Xiegou coal mine in Shanxi Province [J]. Sustainability, 2025, 17(1): 229.
|
[4] |
武强, 赵苏启, 孙文洁, 等. 中国煤矿水文地质类型划分与特征分析 [J]. 煤炭学报, 2013, 38(6): 901‒905.
Wu Q, Zhao S Q, Sun W J, et al. Classification of the hydrogeological type of coal mine and analysis of its characteristics in China [J]. Journal of China Coal Society, 2013, 38(6): 901‒905.
|
[5] |
孙亚军, 徐智敏, 李鑫, 等. 我国煤矿区矿井水污染问题及防控技术体系构建 [J]. 煤田地质与勘探, 2021, 49(5): 1‒16.
Sun Y J, Xu Z M, Li X, et al. Mine water drainage pollution in China's coal mining areas and the construction of prevention and control technical system [J]. Coal Geology & Exploration, 2021, 49(5): 1‒16.
|
[6] |
张春晖, 赵桂峰, 苏佩东, 等. 基于“深地 ‒ 井下 ‒ 地面”联动的煤矿矿井水处理利用模式初探 [J]. 矿业科学学报, 2024, 9(1): 1‒12.
Zhang C H, Zhao G F, Su P D, et al. Treatment and utilization of coal mine water based on "deep ground‒underground‒surface ground" linkage system [J]. Journal of Mining Science and Technology, 2024, 9(1): 1‒12.
|
[7] |
薛罡, 刘建奇, 强志斌, 等. 煤矿矿井水处理和资源化利用的关键问题及对策 [J]. 工业水处理, 2025, 45(1): 1‒8.
Xue G, Liu J Q, Qiang Z B, et al. Key issues and countermeasures of coal mine water treatment and recycling [J]. Industrial Water Treatment, 2025, 45(1): 1‒8.
|
[8] |
缪协兴, 浦海, 白海波. 隔水关键层原理及其在保水采煤中的应用研究 [J]. 中国矿业大学学报, 2008, 37(1): 1‒4.
Miao X X, Pu H, Bai H B. Principle of water-resisting key strata and its application in water-preserved mining [J]. Journal of China University of Mining & Technology, 2008, 37(1): 1‒4.
|
[9] |
范立民, 马雄德, 冀瑞君. 西部生态脆弱矿区保水采煤研究与实践进展 [J]. 煤炭学报, 2015, 40(8): 1711‒1717.
Fan L M, Ma X D, Ji R J. Progress in engineering practice of water-preserved coal mining in western eco-environment frangible area [J]. Journal of China Coal Society, 2015, 40(8): 1711‒1717.
|
[10] |
赵春虎, 王世东, 姬中奎, 等. 榆神矿区中深煤层开采松散含水层地下连续墙侧向截水帷幕可行性分析 [J]. 煤炭学报, 2025, 50(2): 1062‒1072.
Zhao C H, Wang S D, Ji Z K, et al. Feasibility analysis of lateral water interception curtain in loose aquifer during deep coal seam mining in Yushen mining area [J]. Journal of China Coal Society, 2025, 50(2): 1062‒1072.
|
[11] |
张东升, 李文平, 来兴平, 等. 我国西北煤炭开采中的水资源保护基础理论研究进展 [J]. 煤炭学报, 2017, 42(1): 36‒43.
Zhang D S, Li W P, Lai X P, et al. Development on basic theory of water protection during coal mining in northwest of China [J]. Journal of China Coal Society, 2017, 42(1): 36‒43.
|
[12] |
曾一凡, 孟世豪, 吕扬, 等. 基于矿井安全与生态水资源保护等多目标约束的超前疏放水技术 [J]. 煤炭学报, 2022, 47(8): 3091‒3100.
Zeng Y F, Meng S H, Lyu Y, et al. Advanced drainage technology based on multi-objective constraint of mine safety and water resources protection [J]. Journal of China Coal Society, 2022, 47(8): 3091‒3100.
|
[13] |
曾一凡, 刘晓秀, 武强, 等. 双碳背景下“煤 ‒ 水 ‒ 热”正效协同共采理论与技术构想 [J]. 煤炭学报, 2023, 48(2): 538‒550.
Zeng Y F, Liu X X, Wu Q, et al. Theory and technical conception of coal‒water‒thermal positive synergistic co-extraction under the dual carbon background [J]. Journal of China Coal Society, 2023, 48(2): 538‒550.
|
[14] |
李福勤, 王丛, 郑煚州, 等. 煤矿矿井水处理技术现状与展望 [J]. 工业水处理, 2024, 44(9): 1‒8.
Li F Q, Wang C, Zheng J Z, et al. Current situation and prospect of coal mine water treatment technology [J]. Industrial Water Treatment, 2024, 44(9): 1‒8.
|
[15] |
郑海平, 王淑民, 王吉坤, 等. 我国煤矿矿井水处理技术研究进展及建议 [J]. 煤化工, 2024, 52(1): 92‒96.
Zheng H P, Wang S M, Wang J K, et al. Research progress and suggestion on coal mine water treatment technology in China [J]. Coal Chemical Industry, 2024, 52(1): 92‒96.
|
[16] |
何绪文, 王绍州, 张学伟, 等. 煤矿矿井水资源化绿色短流程关键技术与装备 [J]. 煤炭学报, 2024, 49(2): 958‒966.
He X W, Wang S Z, Zhang X W, et al. Key technologies and equipment for green short process of coal mine drainage resource utilization [J]. Journal of China Coal Society, 2024, 49(2): 958‒966.
|
[17] |
屈波, 刘杰, 张世明, 等. 煤矿智能型水处理净化站的应用 [J]. 洁净煤技术, 2024, 30(S1): 609‒614.
Qu B, Liu J, Zhang S M, et al. Application of intelligent water treatment and purification station in coal mines [J]. Clean Coal Technology, 2024, 30(S1): 609‒614.
|
[18] |
苗立永, 王文娟. 高矿化度矿井水处理及分质资源化综合利用途径的探讨 [J]. 煤炭工程, 2017, 49(3): 26‒28, 31.
Miao L Y, Wang W J. Discussion on treatment and graded comprehensive utilization methods for high-salinity mine water [J]. Coal Engineering, 2017, 49(3): 26‒28, 31.
|
[19] |
谢国良, 廉开元, 严明林, 等. 生态脆弱矿区矿井水特征及资源化适宜性研究 [J]. 矿业研究与开发, 2025, 45(4): 278‒288.
Xie G L, Lian K Y, Yan M L, et al. Study on characteristics of mine water and suitability for resource utilization in ecologically fragile mining area [J]. Mining Research and Development, 2025, 45(4): 278‒288.
|
[20] |
孙亚军, 李鑫, 冯琳, 等. 鄂尔多斯盆地煤 ‒ 水协调开采下矿区水资源异位回灌 ‒ 存储技术思路 [J]. 煤炭学报, 2022, 47(10): 3547‒3560.
Sun Y J, Li X, Feng L, et al. Technical thinking on ectopic injection and storage of mine area water resources under the coordinated exploitation of coal and water background in Ordos Basin [J]. Journal of China Coal Society, 2022, 47(10): 3547‒3560.
|
[21] |
马怡斋, 王海燕, 武亚凤, 等. 黄河流域煤矿矿井水综合利用问题分析及管控建议 [J]. 环境科学研究, 2024, 37(1): 122‒130.
Ma Y Z, Wang H Y, Wu Y F, et al. Status analysis and control suggestions on comprehensive utilization of mine water in the Yellow River Basin [J]. Research of Environmental Sciences, 2024, 37(1): 122‒130.
|
[22] |
孙亚军, 郭娟, 徐智敏, 等. 我国煤矿区矿井水水质空间分布特征及矿井水处理技术思路 [J]. 煤炭学报, 2025, 50(1): 584‒599.
Sun Y J, Guo J, Xu Z M, et al. Spatial distribution characteristics of mine water quality in coal mining areas of China and technological approaches for mine water treatment [J]. Journal of China Coal Society, 2025, 50(1): 584‒599.
|
[23] |
孙文洁, 任顺利, 武强, 等. 新常态下我国煤矿废弃矿井水污染防治与资源化综合利用 [J]. 煤炭学报, 2022, 47(6): 2161‒2169.
Sun W J, Ren S L, Wu Q, et al. Waterpollution's prevention and comprehensive utilization of abandoned coal mines in China under the new normal life [J]. Journal of China Coal Society, 2022, 47(6): 2161‒2169.
|
[24] |
张楠, 郭欣伟, 李皓冰. 关于矿井水相关概念与定义的探讨 [J]. 工业安全与环保, 2020, 46(9): 94‒97.
Zhang N, Guo X W, Li H B. Discussion on the concept and definition of mine water [J]. Industrial Safety and Environmental Protection, 2020, 46(9): 94‒97.
|
[25] |
寇嘉玮, 薛亚莉, 张高锋, 等. 陕西非常规水源利用问题及对策研究 [J]. 中国水利, 2023 (13): 14‒17.
Kou J W, Xue Y L, Zhang G F, et al. Research on unconventional water resources utilization issues and strategies in Shaanxi Province [J]. China Water Resources, 2023 (13): 14‒17.
|
[26] |
武强, 李铎. “煤—水”双资源矿井建设与开发研究 [J]. 中国煤炭地质, 2009, 21(3): 32‒35, 62.
Wu Q, Li D. Research of "Coal‒water" double-resources mine construction and development [J]. Coal Geology of China, 2009, 21(3): 32‒35, 62.
|
[27] |
武强, 王志强, 郭周克, 等. 矿井水控制、处理、利用、回灌与生态环保五位一体优化结合研究 [J]. 中国煤炭, 2010, 36(2): 109‒112.
Wu Q, Wang Z Q, Guo Z K, et al. A research on an optimized five-in-one combination of mine water control, treatment, utilization, back-filling and environment friendly treatment [J]. China Coal, 2010, 36(2): 109‒112.
|
[28] |
武强. 我国矿井水防控与资源化利用的研究进展、问题和展望 [J]. 煤炭学报, 2014, 39(5): 795‒805.
Wu Q. Progress, problems and prospects of prevention and control technology of mine water and reutilization in China [J]. Journal of China Coal Society, 2014, 39(5): 795‒805.
|
[29] |
武强, 申建军, 王洋. “煤 ‒ 水”双资源型矿井开采技术方法与工程应用 [J]. 煤炭学报, 2017, 42(1): 8‒16.
Wu Q, Shen J J, Wang Y. Mining techniques and engineering application for "coal‒water" dual-resources mine [J]. Journal of China Coal Society, 2017, 42(1): 8‒16.
|
[30] |
Wu Q, Dong D L, Shi Z H, et al. Optimum combination of water drainage, water supply and eco-environment protection in coal-accumulated basin of North China [J]. Science in China Series D: Earth Sciences, 2000, 43(2): 122‒131.
|
[31] |
Zhang H T, Xu G Q, Zhan H B, et al. Identification of hydrogeochemical processes and transport paths of a multi-aquifer system in closed mining regions [J]. Journal of Hydrology, 2020, 589: 125344.
|
[32] |
孙亚军, 张莉, 徐智敏, 等. 煤矿区矿井水水质形成与演化的多场作用机制及研究进展 [J]. 煤炭学报, 2022, 47(1): 423‒437.
Sun Y J, Zhang L, Xu Z M, et al. Multi-field action mechanism and research progress of coal mine water quality formation and evolution [J]. Journal of China Coal Society, 2022, 47(1): 423‒437.
|
[33] |
曾一凡, 包函, 武强, 等. 新近系保德组沉积薄弱区红土阻水性能及其资源开发意义 [J]. 煤田地质与勘探, 2023, 51(10): 62‒71.
Zeng Y F, Bao H, Wu Q, et al. Water-blocking performance of laterite in weak deposition areas of Neogene Baode Formation and its significance of resource exploitation [J]. Coal Geology & Exploration, 2023, 51(10): 62‒71.
|
[34] |
范立民, 孙强, 马立强, 等. 论保水采煤技术体系 [J]. 煤田地质与勘探, 2023, 51(1): 196‒204.
Fan L M, Sun Q, Ma L Q, et al. Technological system of water-conserving coal mining [J]. Coal Geology & Exploration, 2023, 51(1): 196‒204.
|
[35] |
武强, 樊振丽, 刘守强, 等. 基于GIS的信息融合型含水层富水性评价方法——富水性指数法 [J]. 煤炭学报, 2011, 36(7): 1124‒1128.
Wu Q, Fan Z L, Liu S Q, et al. Water-richness evaluation method of water-filled aquifer based on the principle of information fusion with GIS: Water-richness index method [J]. Journal of China Coal Society, 2011, 36(7): 1124‒1128.
|
[36] |
武强, 许珂, 张维. 再论煤层顶板涌(突)水危险性预测评价的“三图 ‒ 双预测法” [J]. 煤炭学报, 2016, 41(6): 1341‒1347.
Wu Q, Xu K, Zhang W. Further research on "three maps‒two predictions" method for prediction on coal seam roof water bursting risk [J]. Journal of China Coal Society, 2016, 41(6): 1341‒1347.
|
[37] |
武强, 徐华, 赵颖旺, 等. 基于“三图法”煤层顶板突水动态可视化预测 [J]. 煤炭学报, 2016, 41(12): 2968‒2974.
Wu Q, Xu H, Zhao Y W, et al. Dynamic visualization and prediction for water bursting on coal roof based on "three maps method" [J]. Journal of China Coal Society, 2016, 41(12): 2968‒2974.
|
[38] |
范立民, 马雄德, 吴群英, 等. 保水采煤技术规范的技术要点分析 [J]. 煤炭科学技术, 2020, 48(9): 81‒87.
Fan L M, Ma X D, Wu Q Y, et al. Analysis on technical points of water-preserving coal mining technical specifications [J]. Coal Science and Technology, 2020, 48(9): 81‒87.
|
[39] |
曾一凡, 于超, 武强, 等. 煤矿防治水“三区”划分方法及其水害防治意义 [J]. 煤炭学报, 2024, 49(8): 3605‒3618.
Zeng Y F, Yu C, Wu Q, et al. "Three zones" method for coal mine water hazard control and its significance [J]. Journal of China Coal Society, 2024, 49(8): 3605‒3618.
|
[40] |
简煊祥, 李云飞, 杨永均. 煤矿保水开采技术现状及其发展 [J]. 煤田地质与勘探, 2012, 40(1): 47‒50.
Jian X X, Li Y F, Yang Y J. Present situation and development of water-preserved mining technology [J]. Coal Geology & Exploration, 2012, 40(1): 47‒50.
|
[41] |
董书宁, 郭小铭, 刘其声, 等. 华北型煤田底板灰岩含水层超前区域治理模式与选择准则 [J]. 煤田地质与勘探, 2020, 48(4): 1‒10.
Dong S N, Guo X M, Liu Q S, et al. Model and selection criterion of zonal preact grouting to prevent mine water disasters of coal floor limestone aquifer in North China type coalfield [J]. Coal Geology & Exploration, 2020, 48(4): 1‒10.
|
[42] |
曾一凡, 孟世豪, 武强, 等. 天窗补给型衍生式矿井动力突水模式及其评价与治理技术 [J]. 煤炭学报, 2023, 48(10): 3776‒3788.
Zeng Y F, Meng S H, Wu Q, et al. Derivative mine dynamic water inrush mode of skylight leakage and its evaluation and control technology system [J]. Journal of China Coal Society, 2023, 48(10): 3776‒3788.
|
[43] |
徐良骥, 张坤, 刘潇鹏, 等. 离层注浆开采关键层变形特征及地表沉陷控制效应 [J]. 煤炭学报, 2023, 48(2): 931‒942.
Xu L J, Zhang K, Liu X P, et al. Deformation characteristic of key strata and control effect of surface subsidence in mining with grouting into overburden bed-separation [J]. Journal of China Coal Society, 2023, 48(2): 931‒942.
|
[44] |
罗文, 王庆雄. 浅埋强富水区下绿色高效保水开采技术 [J]. 煤炭科学技术, 2024, 52(9): 31‒47.
Luo W, Wang Q X. Green and efficient water conservation mining technology in shallow and strongly water-rich areas [J]. Coal Science and Technology, 2024, 52(9): 31‒47.
|
[45] |
靳德武, 赵春虎, 段建华, 等. 煤层底板水害三维监测与智能预警系统研究 [J]. 煤炭学报, 2020, 45(6): 2256‒2264.
Jin D W, Zhao C H, Duan J H, et al. Research on 3D monitoring and intelligent early warning system for water hazard of coal seam floor [J]. Journal of China Coal Society, 2020, 45(6): 2256‒2264.
|
[46] |
Li F H, Gu Y M, Cheng Y H, et al. Influence of roof confined water drainage on stress distribution in coal seam [J]. Scientific Reports, 2024, 14: 24040.
|
[47] |
袁存忠, 陈锦如. 水资源与矿井水处理利用 [J]. 合肥工业大学学报(自然科学版), 2000, 23(S1): 927‒929, 933.
Yuan C Z, Chen J R. Disposal and use of shaft drainage as water resource [J]. Journal of Hefei University of Technology (Natural Science), 2000, 23(S1): 927‒929, 933.
|
[48] |
王皓, 董书宁, 尚宏波, 等. 国内外矿井水处理及资源化利用研究进展 [J]. 煤田地质与勘探, 2023, 51(1): 222‒236.
Wang H, Dong S N, Shang H B, et al. Domestic and foreign progress of mine water treatment and resource utilization [J]. Coal Geology & Exploration, 2023, 51(1): 222‒236.
|
[49] |
孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展 [J]. 煤炭学报, 2020, 45(1): 304‒316.
Sun Y J, Chen G, Xu Z M, et al. Research progress of water environment, treatment and utilization in coal mining areas of China [J]. Journal of China Coal Society, 2020, 45(1): 304‒316.
|
[50] |
郭中权, 毛维东, 肖艳, 等. 矿井水处理中聚丙烯酰胺残留物对反渗透膜污染的贡献 [J]. 煤炭学报, 2020, 45(S2): 986‒992.
Guo Z Q, Mao W D, Xiao Y, et al. Contribution of polyacrylamide residue to reverse osmosis membrane pollution in mine water treatment [J]. Journal of China Coal Society, 2020, 45(S2): 986‒992.
|
[51] |
何绪文, 王绍州, 张学伟, 等. 煤矿矿井水资源化利用技术创新 [J]. 煤炭科学技术, 2023, 51(1): 523‒530.
He X W, Wang S Z, Zhang X W, et al. Coal mine drainage resources utilization technology innovation [J]. Coal Science and Technology, 2023, 51(1): 523‒530.
|
[52] |
梁旭, 张兆, 白振荣, 等. 煤矿井下处理高浊矿井水工艺技术的研究 [J]. 煤炭加工与综合利用, 2024 (5): 81‒84.
Liang X, Zhang Z, Bai Z R, et al. Research on a technology for treating high turbidity mine water underground in coal mines [J]. Coal Processing & Comprehensive Utilization, 2024 (5): 81‒84.
|
[53] |
Skrzypczak A, Tandyrak R. Biotic aspects of suspended solid reduction in sedimentation ponds [J]. Environmental Science and Pollution Research, 2024, 31(56): 65066‒65077.
|
[54] |
Zhang H T, Jiang B B, Zhang H Q, et al. Water-rock interaction mechanisms and hydrochemical evolution in the underground reservoirs of coal mines [J]. ACS Omega, 2024, 9(43): 43834‒4384.
|
[55] |
张溪彧, 董书宁, 王锐, 等. 含悬浮物矿井水微絮凝 ‒ 多级过滤工艺研究 [J]. 水文地质工程地质, 2023, 50(5): 222‒230.
Zhang X Y, Dong S N, Wang R, et al. A study of the microflocculation-multistage filtration technology of mine water containing suspended solids [J]. Hydrogeology & Engineering Geology, 2023, 50(5): 222‒230.
|
[56] |
刘遵义, 李小亮. 高矿化度矿井水处理技术应用现状 [J]. 洁净煤技术, 2023, 29(S2): 436‒441.
Liu Z Y, Li X L. Application status of mine water treatment technology with high salinity [J]. Clean Coal Technology, 2023, 29(S2): 436‒441.
|
[57] |
靳德武, 葛光荣, 张全, 等. 高矿化度矿井水节能脱盐新技术 [J]. 煤炭科学技术, 2018, 46(9): 12‒18.
Jin D W, Ge G R, Zhang Q, et al. New energy-saving desalination technology of highly-mineralized mine water [J]. Coal Science and Technology, 2018, 46(9): 12‒18.
|
[58] |
张海琴, 李庭, 李井峰. 电化学技术在矿井水处理中的应用与展望 [J]. 中国煤炭, 2021, 47(2): 70‒75.
Zhang H Q, Li T, Li J F. Application and prospect of electrochemical technology in mine water treatment [J]. China Coal, 2021, 47(2): 70‒75.
|
[59] |
刘兆峰, 郭强, 王霄, 等. 基于双极膜电渗析的膜集成技术的高矿化度矿井水资源化处理 [J]. 煤炭学报, 2024, 49(5): 2462‒2471.
Liu Z F, Guo Q, Wang X, et al. Resource utilization of high-salinity mine water through the membrane-integrated process based on bipolar membrane electrodialysis [J]. Journal of China Coal Society, 2024, 49(5): 2462‒2471.
|
[60] |
Li K L, Zhu S C, Liu Z M, et al. Simultaneous desalination and glyphosate degradation by a novel electro-Fenton membrane distillation process [J]. Environmental Science & Technology, 2023, 57(47): 19023‒19032.
|
[61] |
毛维东, 周如禄, 郭中权. 煤矿矿井水零排放处理技术与应用 [J]. 煤炭科学技术, 2017, 45(11): 205‒210.
Mao W D, Zhou R L, Guo Z Q. Zero liquid discharge treatment technology and application for coal mine drainage water [J]. Coal Science and Technology, 2017, 45(11): 205‒210.
|
[62] |
Mosai A K, Ndlovu G, Tutu H. Improving acid mine drainage treatment by combining treatment technologies: A review [J]. Science of The Total Environment, 2024, 919: 170806.
|
[63] |
Jiang Y Y, Di J Z, Gao M Q, et al. Study on the new slow-release carbon source biochemistry and its improvement of SRB on the acid mine drainage treatment [J]. Journal of Environmental Management, 2024, 370: 122860.
|
[64] |
Noor I, Arifin Y F, Priatmadi B J, et al. Laboratory simulation of the swampy forest system for the passive treatment of acid mine drainage in coal mine reclamation areas [J]. Scientific Reports, 2023, 13: 6077.
|
[65] |
Jiang F, Lu X Y, Zeng L J, et al. The purification of acid mine drainage through the formation of schwertmannite with Fe(0) reduction and alkali-regulated biomineralization prior to lime neutralization [J]. Science of The Total Environment, 2024, 908: 168291.
|
[66] |
Lei Y, Li W Y, Han Y H, et al. Biomimetic ZrO2-modified seaweed residue with excellent fluorine/bacteria removal and uranium extraction properties for wastewater purification [J]. Water Research, 2024, 252: 121219.
|
[67] |
Wu W J, Wang J L. High efficiency adsorption of uranium by magnesia-silica-fluoride co-doped hydroxyapatite [J]. Chemosphere, 2024, 352: 141398.
|
[68] |
Li J L, Hu Y Z, Shen Z W, et al. Efficient uranium(VI) recovery from fluorinated wastewater via deferiprone ligand complexation [J]. Water Research, 2025, 271: 122884.
|
[69] |
Chudy K. Mine water as geothermal resource in nowa Ruda Region (SW Poland) [J]. Water, 2022, 14(2): 136.
|
[70] |
Menéndez J, Ordónez A, Fernández-Oro J M, et al. Feasibility analysis of using mine water from abandoned coal mines in Spain for heating and cooling of buildings [J]. Renewable Energy, 2020, 146: 1166‒1176.
|
[71] |
薄本玉, 杨朝阳, 谭肖波, 等. 关于地热水理疗评价指标沿革的探讨 [J]. 山东国土资源, 2024, 40(11): 37‒41.
Bo B Y, Yang Z Y, Tan X B, et al. Study on the evolution of geothermal water physiotherapy evaluation indicators [J]. Shandong Land and Resources, 2024, 40(11): 37‒41.
|
[72] |
闫佳伟, 王红瑞, 赵伟静, 等. 我国矿井水资源化利用现状及前景展望 [J]. 水资源保护, 2021, 37(5): 117‒123.
Yan J W, Wang H R, Zhao W J, et al. Current status and prospect of mine water reutilization in China [J]. Water Resources Protection, 2021, 37(5): 117‒123.
|
[73] |
李亚娟, 余耀宏, 卢剑, 等. 滇东白龙山煤矿矿井水处理工艺及回用分析 [J]. 煤炭工程, 2021, 53(9): 16‒19.
Li Y J, Yu Y H, Lu J, et al. Treatment and recycling process of mine water in Bailongshan Coal Mine in Eastern Yunnan [J]. Coal Engineering, 2021, 53(9): 16‒19.
|
[74] |
Liu Y, Zhao W B, Zhang Y S, et al. Influence of high sulfate mine water on spontaneous combustion of coal [J]. ACS Omega, 2022, 7(50): 46347‒46357.
|
[75] |
Liu C S, Liang L L, Wang L, et al. Allocation and utilization of coal mine water for ecological protection of lakes in semi-arid area of China [J]. Sustainability, 2022, 14(15): 9042.
|
[76] |
Mansilha C, Melo A, Flores D, et al. Irrigation with coal mining effluents: Sustainability and water quality considerations (São Pedro da cova, north Portugal) [J]. Water, 2021, 13(16): 2157.
|
[77] |
Farhad Howladar M, Deb P, Huqe Muzemder A S. Monitoring the underground roadway water quantity and quality for irrigation use around the Barapukuria coal mining industry, Dinajpur, Bangladesh [J]. Groundwater for Sustainable Development, 2017, 4: 23‒34.
|
[78] |
Monckton D, Cavaye J, Huth N, et al. Use of coal seam water for agriculture in Queensland, Australia [J]. Water International, 2017, 42(5): 599‒617.
|
[79] |
樊龙斌. 乌兰木伦煤矿矿井水综合利用工程技术研究 [J]. 煤炭科学技术, 2017, 45(S2): 42‒44.
Fan L B. Study on engineering technology of comprehensive utilization of mine water in wulanmulun coal mine [J]. Coal Science and Technology, 2017, 45(S2): 42‒44.
|
[80] |
Geller W. Case studies and regional surveys [C]// Geller W, Schultze M, Kleinmann R, et al. Acidic pit lakes. Heidelberg: Springer, 2012: 265‒435.
|
[81] |
Chi M B, Zhang D S, Zhao Q, et al. Determining the scale of coal mining in an ecologically fragile mining area under the constraint of water resources carrying capacity [J]. Journal of Environmental Management, 2021, 279: 111621.
|
[82] |
潘雷坤, 张青果. 保水开采开全国矿井水零排放先河 [N]. 河北经济日报, 2009-12-10(02).
Pan L K, Zhang Q G. Water conservation mining creates a national precedent of zero mine water discharge [N]. Hebei Economic Daily, 2009-12-10(02).
|
[83] |
于兴社, 韩贵雷, 赵晓明. 中关铁矿矿坑水回灌试验研究 [J]. 矿业工程, 2016, 14(2): 46‒48.
Yu X S, Han G L, Zhao X M. Recharge test study of Zhongguan iron ore pit water [J]. Mining Engineering, 2016, 14(2): 46‒48.
|
[84] |
赵彩凤, 杨建. 高矿化度矿井水地下回灌对毛乌素沙漠地下水水质的影响 [J]. 煤矿安全, 2018, 49(3): 29‒32.
Zhao C F, Yang J. Influence of groundwater recharge with high salinity mine water on groundwater quality in mu us desert [J]. Safety in Coal Mines, 2018, 49(3): 29‒32.
|
[85] |
Dillon P, Zheng Y, Alley W, et al. Managed aquifer recharge: Overview and governance [M]. London: International Association of Hydrogeologists Special Publication, 2022.
|
[86] |
李志明. 高矿化度矿井水回灌技术分析 [J]. 中国煤炭, 2010, 36(11): 111‒113.
Li Z M. Analysis of the super mineralized mine-water back-filling technology [J]. China Coal, 2010, 36(11): 111‒113.
|
[87] |
Cook P G, Miller A D, Wallis I, et al. Facilitating open pit mine closure with managed aquifer recharge [J]. Groundwater, 2022, 60(4): 477‒487.
|
[88] |
Schafer D, Sun J, Jamieson J, et al. Model-based analysis of reactive transport processes governing fluoride and phosphate release and attenuation during managed aquifer recharge [J]. Environmental Science & Technology, 2020, 54(5): 2800‒2811.
|
[89] |
Rizzo P, Bucci A, Monaco P, et al. Investigating the potential impact on shallow groundwater quality of oily wastewater injection in deep petroleum reservoirs: A multidisciplinary evaluation at the val d'Agri oilfield (southern Italy) [J]. Sustainability, 2023, 15(12): 9161.
|
[90] |
Chen G, Xu Z M, Rudakov D, et al. Deep groundwater flow patterns induced by mine water injection activity [J]. International Journal of Environmental Research and Public Health, 2022, 19(23): 15438.
|
[91] |
Wu P P, Comte J C, Zhang L J, et al. Effect of surface water level fluctuations on the performance of near-bank managed aquifer recharge from injection wells [J]. Water, 2021, 13(21): 3013.
|
[92] |
Palma Nava A, Parker T K, Carmona Paredes R B. Challenges and experiences of managed aquifer recharge in the Mexico City metropolitan area [J]. Groundwater, 2022, 60(5): 675‒684.
|
[93] |
Dillon P, Page D, Vanderzalm J, et al. Lessons from 10 years of experience with Australia's risk-based guidelines for managed aquifer recharge [J]. Water, 2020, 12(2): 537.
|
/
〈 |
|
〉 |