Hydrogeological Parameter Identification Based on the Radial Basis Function Neural Networks

Zhang Junyan1、 Wei Lianwei1、 Han Weixiu1、 Shao Jingli2、 Cui Yali2、 Zhang Jianli2

Strategic Study of CAE ›› 2004, Vol. 6 ›› Issue (8) : 74-78.

PDF(2605 KB)
PDF(2605 KB)
Strategic Study of CAE ›› 2004, Vol. 6 ›› Issue (8) : 74-78.
Research Report

Hydrogeological Parameter Identification Based on the Radial Basis Function Neural Networks

  • Zhang Junyan1、 Wei Lianwei1、 Han Weixiu1、 Shao Jingli2、 Cui Yali2、 Zhang Jianli2

Author information +
History +

Abstract

The problem of hydrogeological parameter identification is actually a complex one. With the limit of identifying the parameter by traditional methods, the radial basis function neural networks (RBF) is applied into this area. Not only the parameter identification is automatically realized, but also th.e problem of local optimization is solved. The feasibility and effectiveness have been proved by the examples.

Keywords

groundwater / hydrogeological parameter / radial basis function (RBF) neural networks / BP neural networks

Cite this article

Download citation ▾
Zhang Junyan,Wei Lianwei,Han Weixiu,Shao Jingli,Cui Yali,Zhang Jianli. Hydrogeological Parameter Identification Based on the Radial Basis Function Neural Networks. Strategic Study of CAE, 2004, 6(8): 74‒78
AI Summary AI Mindmap
PDF(2605 KB)

Accesses

Citations

Detail

Sections
Recommended

/