一、前言
二、我国公共卫生应急防控的发展现状
三、公共卫生事件的精准防控


Strategic Study of Chinese Academy of Engineering >
Precise Control and Integrated Management of Public Health Emergencies
Received date: 28 Jul 2021
Published date: 20 Oct 2021
As public health emergencies become increasingly complex and frequent worldwide, modernization of the public health emergency system is urgently required for improving the overall security level of a country; it is also crucial for the modernization of the national governance system. In this study, we summarize China’s response to public health emergencies from three aspects: epidemic surveillance and reporting system, sentinel surveillance and multipoint trigger mechanism, and mobile terminal application for individuals. Moreover, we explore the development paths for precise control and integrated management of public health emergencies and propose corresponding suggestions. Specifically, precision control can be realized by combining the following aspects: temporal and spatial modeling and calculation for the epidemic, epidemic data collection and information statistics, grassroots community prevention and control, and emergency resource supply. Integrated management should focus on: collection and perception of social governance information, data analysis and calculation platforms, rapid response and command at the grassroots level, epidemic monitoring/early warning/prediction, and continuous risk assessment. Furthermore, we suggest that China should strengthen information technology to enable epidemic prevention and control, improve its epidemic monitoring and reporting system, and build an integrated prevention and control system for public health governance.
Yi Liu , Yudong Zhang , Hui Zhang , Weicheng Fan . Precise Control and Integrated Management of Public Health Emergencies[J]. Strategic Study of Chinese Academy of Engineering, 2021 , 23(5) : 24 -33 . DOI: 10.15302/J-SSCAE-2021.05.004
[1] |
Lai S, Ruktanonchai N W, Zhou L, et al. Effect of nonpharmaceutical interventions to contain COVID-19 in China [J]. Nature, 2020, 585(7825): 410–413.
|
[2] |
Ruktanonchai N W, Floyd J R, Lai S, et al. Assessing the impact of coordinated COVID-19 exit strategies across Europe [J]. Science, 2020, 369(6510): 1465–1470.
|
[3] |
Flaxman S, Mishra S, Gandy A, et al. Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe [J]. Nature, 2020, 584(7820): 257–261.
|
[4] |
Davis E L, Lucas T C D, Borlase A, et al. Contact tracing is an imperfect tool for controlling COVID-19 transmission and relies on population adherence [J]. Nature Communications, 2021, 12(9): 1–8.
|
[5] |
Moon S A, Scoglio C M. Contact tracing evaluation for COVID-19 transmission in the different movement levels of a rural college town in the USA [J]. Scientific Reports, 2021, 11(3): 1–12.
|
[6] |
Huang Q S, Wood T, Jelley L, et al. Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand [J]. Nature Communications, 2021,12(2): 1–7.
|
[7] |
Suryanarayanan P, Tsou C H, Poddar A, et al. AI-assisted tracking of worldwide non-pharmaceutical interventions for COVID-19 [J]. Scientific Data, 2021, 8(3): 1–14.
|
[8] |
国务院新闻办公室. 国家人权行动计划(2012—2015年)实施评 估报告 [EB/OL]. (2016-06-14)[2021-07-20]. http://www.gov.cn/ xinwen/2016-06/14/content_5082026.htm. The State Council Information Office of the People’s Republic of China. Evaluation report on the implementation of the national human rights action plan (2012―2015) [EB/OL]. (2016-06- 14)[2021-07-20]. http://www.gov.cn/xinwen/2016-06/14/ content_5082026.htm.
|
[9] |
赵自雄, 赵嘉, 马家奇. 我国传染病监测信息系统发展与整合建 设构想 [J]. 疾病监测, 2018, 33(5): 423–427. Zhao Z X, Zhao J, Ma J Q. Conception of an integrated information system for notifiable disease communicable surveillance in China [J]. Disease Surveillance, 2018, 33(5): 423– 427.
|
[10] |
王宇, 向妮娟, 倪大新, 等. 安徽省两所地市级医院不明原因肺 炎监测系统运行情况调查 [J]. 疾病监测, 2017, 32(5): 428–432. Wang Y, Xiang N J, Ni D X, et al. Performance of surveillance system of pneumonia with unknown etiology in two hospitals at municipal (prefecture) level in Anhui Province [J]. Disease Surveillance, 2017, 32(5): 428–432.
|
[11] |
王潇雨. 全球共谋流感防控 [N]. 健康报, 2018-05-24(01). Wang X Y. Global conspiracy for influenza prevention and control [N]. Health News, 2018-05-24(01).
|
[12] |
上海市卫生健康委员会, 上海市发展和改革委员会, 上海市 经济和信息化委员会, 等. 上海市加强公共卫生体系建设三 年行动计划 (2020—2022年 ) [EB/OL]. (2020-06-01)[2021-07- 20]. https://www.shanghai.gov.cn/nw12344/20200813/0001- 12344_65151.html. Shanghai Municipal Health Commission, Shanghai Municipal Development & Reform Commission, Shanghai Municipal Commission of Economy and Informatization, et al. Three years action plan for strengthening the construction of public health system in Shanghai (2020―2022) [EB/OL]. (2020-06-01)[2021- 07-20]. https://www.shanghai.gov.cn/nw12344/20200813/0001- 12344_65151.html.
|
[13] |
中国互联网络信息中心. 第47次《中国互联网络发展状况统计 报告》 [EB/OL]. (2021-02-03)[2021-07-20]. http://www.cnnic.net. cn/hlwfzyj/hlwxzbg/hlwtjbg/202102/t20210203_71361.htm. China Internet Network Information Center. The 47th China statistical report on Internet development [EB/OL]. (2021-02- 03) [2021-07-20]. http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/ hlwtjbg/202102/t20210203_71361.htm.
|
[14] |
Kermack W O, Mckendrick A G. A contribution to the mathematical theory of epidemics [J]. Proceedings of the Royal Society of London Series A, Containing Papers of A Mathematical and Physical Character, 1927, 115(772): 700–721.
|
[15] |
韩华, 马爱娜, 赵夏, 等. 具有远程感染机制的SIRS传播模型及 仿真 [J]. 武汉理工大学学报, 2010, 32(2): 141–145. Han H, Ma A N, Zhao X, et al. SIRS model with the longdistance spread and emulation [J]. Journal of Wuhan University of Technology, 2010, 32(2): 141–145.
|
[16] |
杜燕飞, 肖鹏, 曹慧. 具有阶段结构的周期SEIR传染病模型的 动力学性态 [J]. 四川师范大学学报(自然科学版), 2017, 40(1): 73–77. Du Y F, Xiao P, Cao H. Dynamic behavior of a periodic seir epidemic model with stage-structure [J]. Journal of Sichuan Normal University (Natural Science), 2017, 40(1): 73–77.
|
[17] |
Hethcote H W. The mathematics of infectious diseases [J]. SIAM Review, 2000, 42(4): 599–653.
|
[18] |
Castillo-Chavez C, Castillo-Garsow C W, Yakubu A A. Mathematical models of isolation and quarantine [J]. The Journal of American Medical Association, 2003, 290(21): 2876–2877.
|
[19] |
Lucia1 U, Deisboeck T S, Grisolia1 G. Entropy-based pandemics forecasting [J]. Frontiers in Physics, 2020, 8: 1–7.
|
[20] |
Roques L, Klein E K, Papax J, et al. Impact of lockdown on the epidemic dynamics of COVID-19 in France [J]. Frontiers in Medicine, 2020, 7: 1–7.
|
[21] |
Della M M, Orlando D, Sannino F. Renormalisation group approach to pandemics: The COVID-19 case [J]. Frontiers in Physics, 2020, 8: 1–7.
|
[22] |
Fisman D N, Hauck T S, Tuite A R, et al. An IDEA for short term outbreak projection: nearcasting using the basic reproduction number [J]. PLOS ONE, 2013, 8(12): 1–7.
|
[23] |
Tuite A R, Fisman D N. The IDEA model: A single equation approach to the Ebola forecasting challenge [J]. Epidemics, 2018, 22: 71–77.
|
[24] |
Hsieh Y. Richards model: A simple procedure for real-time prediction of outbreak severity [M] // Ma Z, Zhou Y, Wu J. Modeling and dynamics of infectious diseases, Singapore: World Scientific, 2009: 216–236.
|
[25] |
王丙刚, 曲波, 郭海强, 等. 传染病预测的数学模型研究 [J]. 中 国卫生统计, 2007, 24(5): 536–540. Wang B G, Qu B, Guo H Q, et al. Study on mathematical model of infectious disease prediction [J]. Chinese Journal of Health Statistics, 2007, 24(5): 536–540.
|
[26] |
Moirano G, Richiardi L, Novara C, et al. approaches to daily monitoring of the SARS-CoV-2 outbreak in Northern Italy [J]. Frontiers in Public Health, 2020, 8: 1–7.
|
[27] |
Brooks L C, Farrow D C, Hyun S, et al. Flexible modeling of epidemics with an empirical Bayes framework [J]. PLOS Computational Biology, 2015, 11: 1–51.
|
[28] |
Yang Z, Zeng Z, Wang K, et al. Modified SEIR and AI prediction 033 中国工程科学 2021 年 第 23 卷of the epidemics trend of COVID-19 in China under public health interventions [J]. Journal of Thoracic Disease, 2020, 12(3): 165– 174.
|
[29] |
Hu Z X, Ge Q Y, Li S D, et al. Forecasting and evaluating multiple interventions for COVID-19 worldwide [J]. Frontiers in Physics, 2020, 3: 1–10.
|
[30] |
Utsunomiya Y T, Utsunomiya A, Torrecilha R, et al. Growth rate and acceleration analysis of the COVID-19 pandemic reveals the effect of public health measures in real time [J]. Frontiers in Medicine, 2020, 7: 1–10.
|
[31] |
Tsallis C, Tirnakli U. Predicting COVID-19 peaks around the world [J]. Frontiers in Physics, 2020, 8: 1–6.
|
[32] |
Buckee C, Noor A, Sattenspiel L. Thinking clearly about social aspects of infectious disease transmission [J]. Nature, 2021. 595(7866): 205–213.
|
[33] |
王飞跃, 曾大军, 毛文吉. 社会计算的意义、发展与研究状况 [J]. 科研信息化技术与应用, 2010, 1(2): 3–14. Wang F Y, Zeng D J, Mao W J. Social computing: Its significance, development and research status [J]. e-Science Technology & Application, 2010, 1(2): 3–14.
|
[34] |
Minar N, Burkhart R, Langton C G, et al. The swarm simulation system: A toolkit for building multi-agent simulations [EB/OL]. (1996-06-21)[2021-07-21]. https://santafe.edu/research/results/ working-papers/the-swarm-simulation-system-a-toolkit-for-building.
|
[35] |
Collier N. RePast: An extensible framework for agent simulation [J]. Natural Resources and Environmental Issues (NREI), 2001 (8): 17–21.
|
[36] |
Tisue S, Wilensky U. NetLogo: A simple environment for modeling complexity [C]. Boston: The Fifth International Conference on Complex Systems, 2004: 1–9.
|
[37] |
袁宏永, 梁漫春, 黄全义, 等. 实证数据同化案例方法在新冠肺 炎疫情分析中的应用 [J]. 科技导报, 2020, 38(6): 83–89. Yuan H Y, Liang M C, Huang Q Y, et al. Application of empirical data assimilation method in trend analysis of COVID-19 [J]. Science & Technology Review, 2020, 38(6): 83–89.
|
/
〈 |
|
〉 |