一、 前言
二、 稠油结构致黏机理和提高采收率机理


三、 稠油绿色驱油体系研发


Strategic Study of Chinese Academy of Engineering >
Investigation and Application of Chemical Compound Flooding for Heavy Oil
Received date: 10 Jul 2023
Published date: 22 May 2024
China has considerable heavy oil reserves, with 60% being deep heavy oil. However, the mainstream thermal recovery technologies, such as cyclic steam stimulation, have a recovery rate of less than 20%. The development potential of heavy oil resources is enormous, and actively exploring new development methods to improve the recovery rate is an inevitable choice for the high-quality development of the petroleum industry. This study focuses on the construction of a chemical compound flooding technology system for heavy oil and its field application, providing an effective solution for the development of green and low-cost sequential technologies for deep heavy oil. Based on the analysis of the components of heavy oil, this study elaborates on the structural viscous mechanism and the recovery improving mechanisms (i.e., chemical viscosity reduction, starting pressure gradient reduction, and oil displacement efficiency improvement mechanisms), which enriches the theoretical understanding. In response to urgent need of engineering applications, this study breaks through the green chemical flooding system for heavy oil from two aspects:the design and synthesis of water-soluble viscosity reducers and the development of self-assembling plugging agents. The developed chemical compound flooding technology for heavy oil has been successfully applied in three demonstration projects, achieving good results in increasing oil production and controlling water cut. Furthermore, this study outlines the key points for the subsequent development of molecular oil recovery theory and technology, as well as percolation theory and numerical simulation technology,
providing inspiration and reference for research on green and efficient development technologies for deep heavy oil and the promotion
of chemical compound flooding technology for heavy oil.
Bingyu Ji , Lin Meng , Qinglin Shu , Jichao Fang , Shu Yang , He Liu . Investigation and Application of Chemical Compound Flooding for Heavy Oil[J]. Strategic Study of Chinese Academy of Engineering, 2024 , 26(1) : 216 -224 . DOI: 10.15302/J-SSCAE-2024.07.001
[1] |
凡玉梅, 凡哲元, 余强. 基于开发技术的稠油油藏未动用储量分类评价 [J]. 石油地质与工程, 2023, 37(3): 63‒68.
|
[2] |
关文龙, 蒋有伟, 郭二鹏, 等. "双碳"目标背景下的稠油开发对策 [J]. 石油学报, 2023, 44(5): 826‒840.
|
[3] |
孙焕泉, 刘慧卿, 王海涛, 等. 中国稠油热采开发技术与发展方向 [J]. 石油学报, 2022, 43(11): 1664‒1674.
|
[4] |
马锋, 张光亚, 王红军, 等. 全球重油与油砂资源潜力、分布与勘探方向 [J]. 吉林大学学报 (地球科学版), 2015, 45(4): 1042‒1051.
|
[5] |
杨勇. 胜利油田稠油开发技术新进展及发展方向 [J]. 油气地质与采收率, 2021, 28(6): 1‒11.
|
[6] |
崔传智, 郑文乾, 祝仰文, 等. 蒸汽吞吐后转降黏化学驱加密井井位优化方法 [J]. 石油学报, 2020, 41(12): 1643‒1648, 1656.
|
[7] |
Liu Z D, Wang H J, Blackbourn G, et al. Heavy oils and oil sands: Global distribution and resource assessment [J]. Acta Geologica Sinica, 2019, 93(1): 199‒212.
|
[8] |
冯岸洲, 张贵才, 葛际江, 等. 表面活性剂体系改善稠油油藏注蒸汽开发效果研究进展 [J]. 油田化学, 2012, 29(1): 122‒127.
|
[9] |
周英杰. 胜利油区水驱普通稠油油藏注蒸汽提高采收率研究与实践 [J]. 石油勘探与开发, 2006, 33(4): 479‒483.
|
[10] |
方吉超, 李晓琦, 计秉玉, 等. 中国稠油蒸汽吞吐后提高采收率接替技术前景 [J]. 断块油气田, 2022, 29(3): 378‒382, 389.
|
[11] |
李锦超, 王磊, 丁保东, 等. 稠油热 / 化学驱油技术现状及发展趋势 [J]. 西安石油大学学报 (自然科学版), 2010, 25(4): 36‒40, 110.
|
[12] |
Wilson A. Pelican lake: First successful application of polymer flooding in a heavy-oil reservoir [J]. Journal of Petroleum Technology, 2015, 67(1): 78‒80.
|
[13] |
李广超. 国内油田三次采油提高采收率主体技术进展 (上) [J]. 油田化学, 2023, 40(1): 168‒174.
|
[14] |
王成旗, 李一慧, 张金山, 等. 大庆油田化学驱提高采收率研究进展 [J]. 化学工程师, 2021, 35(6): 61‒64.
|
[15] |
刘建锟. 沥青质分子结构研究进展 [J]. 炼油技术与工程, 2018, 48(9): 1‒4.
|
[16] |
袁梦龙, 申海平, 侯焕娣. 石油沥青质分子结构模型研究进展 [J]. 广东化工, 2020, 47(2): 91‒95.
|
[17] |
李杰瑞, 刘卫东, 周义博, 等. 化学驱及乳化研究现状综述 [J]. 应用化工, 2018, 47(9): 1957‒1961.
|
[18] |
周亚洲, 杨文斌, 殷代印. 化学驱原油原位乳化及提高采收率机理研究进展 [J]. 油田化学, 2022, 39(4): 745‒752.
|
[19] |
李柏林, 冯聪聪, 杨凤艳, 等. 原油乳状液稳定性影响因素 [J]. 化学工程师, 2013, 27(11): 41‒43.
|
[20] |
山金城, 李保振, 张延旭, 等. 海上油田化学驱技术研究与应用进展 [J]. 科技导报, 2020, 38(17): 127‒133.
|
[21] |
杜春晓, 耿志刚, 廖辉, 等. 渤海稠油油田开发技术国际对标研究 [J]. 当代化工, 2022, 51(8): 1984‒1990.
|
[22] |
Chen X, Zhang Y, Han J, et al. Direct nickel petroporphyrin analysis through electrochemical oxidation in electrospray ionization ultrahigh-resolution mass spectrometry [J]. Energy & Fuels, 2021, 35(7): 5748‒5757.
|
[23] |
Yen T F, Erdman J G, Pollack S S. Investigation of the structure of petroleum asphaltenes by X-ray diffraction [J]. Analytical Chemistry, 1961, 33: 1587‒1594.
|
[24] |
Mullins O C. The modified yen model [J]. Energy & Fuels, 2010, 24(4): 2179‒2207.
|
[25] |
曹嫣镔, 刘冬青, 张仲平, 等. 胜利油田超稠油蒸汽驱汽窜控制技术 [J]. 石油勘探与开发, 2012, 39(6): 739‒743.
|
[26] |
郑昕, 姚秀田, 夏海容, 等. 稠油化学堵调降黏复合驱油体系构建及驱油机理分析 [J]. 油气地质与采收率, 2021, 28(6): 122‒128.
|
[27] |
戴名扬, 吴玉国, 李小玲, 等. 耐温耐盐复配型降黏剂乳化降黏实验研究 [J]. 应用化工, 2018, 47(11): 2406‒2409.
|
[28] |
任亚青, 吴本芳. 耐盐耐高温超稠油降黏剂的研制与性能评价 [J]. 油田化学, 2020, 37(2): 318‒324.
|
[29] |
孙永涛, 李兆敏, 孙玉豹, 等. 稠油耐高温乳化降黏剂AESO的合成及其性能 [J]. 大庆石油地质与开发, 2021, 40(3): 103‒108.
|
[30] |
Li P C, Zhang F S, Gong Y J, et al. Synthesis and properties of functional polymer for heavy oil viscosity reduction [J]. Journal of Molecular Liquids, 2021, 330: 115635.
|
[31] |
郭娜, 李亮, 张潇, 等. 高分子乳化降粘剂的制备与性能评价 [J]. 应用化工, 2019, 48(10): 2308‒2311.
|
[32] |
马超, 张明华, 张雄, 等. 双亲性聚合物稠油降黏剂的合成及降黏性能 [J]. 高分子材料科学与工程, 2020, 36(4): 61‒66.
|
[33] |
李汉勇, 高航, 秦守强, 等. 含水稠油在纳米 – 微波协同下的降黏实验研究 [J]. 西南石油大学学报 (自然科学版), 2020, 42(5): 179‒186.
|
[34] |
邢钰, 吴艳华, 郭继香, 等. 稠油致黏关键组分微观性质 [J]. 科学技术与工程, 2020, 20(5): 1833‒1838.
|
[35] |
赵瑞玉, 展学成, 张超, 等. 特超稠油黏度的影响因素研究 [J]. 油田化学, 2016, 33(2): 319‒324.
|
[36] |
赵凯, 丁汝杰, 于欣. 稠油致黏因素研究现状 [J]. 广东化工, 2012, 39(12): 5‒6.
|
[37] |
王晨辉, 徐基鹏, 张厚君, 等. 稠油降黏机理及降黏剂合成方法的研究进展 [J]. 化学工业与工程, 2022, 39(3): 1‒17.
|
[38] |
王艳萍, 孙风跃, 梁心怡, 等. 耐温耐盐乳化降黏剂的结构设计及其构效关系 [J]. 精细化工, 2020, 37(4): 826‒833.
|
/
〈 |
|
〉 |