Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2019, Volume 5, Issue 3 doi: 10.1016/j.eng.2019.03.006

Data-Driven Discovery in Mineralogy: Recent Advances in Data Resources, Analysis, and Visualization

a Geophysical Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
b Department of Geosciences, The University of Arizona, Tucson, AZ 85721-0077, USA
c Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
d School of Earth and Climate Sciences, University of Maine, Orono, ME 04469, USA
e Department of Geology, Southern Illinois University, Carbondale, IL 62901, USA
f Mathematics, Statistics, and Computer Science, Purdue University Northwest, Hammond, IN 46323-2094, USA
g Kola Science Centre of the Russian Academy of Sciences, Apatity, Murmansk Region 184209, Russia
h Department of Computer Science, University of Idaho, Moscow, ID 83844-1010, USA
i Mindat.org, Mitcham CR4 4FD, UK
j Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071-2000, USA

Received: 2018-11-15 Revised: 2019-02-18 Accepted: 2019-03-13 Available online: 2019-06-14

Next Previous

Abstract

Large and growing data resources on the diversity, distribution, and properties of minerals are ushering in a new era of data-driven discovery in mineralogy. The most comprehensive international mineral database is the IMA database, which includes information on more than 5400 approved mineral species and their properties, and the mindat.org data source, which contains more than 1 million species/locality data on minerals found at more than 300 000 localities. Analysis and visualization of these data with diverse techniques—including chord diagrams, cluster diagrams, Klee diagrams, skyline diagrams, and varied methods of network analysis—are leading to a greater understanding of the co-evolving geosphere and biosphere. New data-driven approaches include mineral evolution, mineral ecology, and mineral network analysis—methods that collectively consider the distribution and diversity of minerals through space and time. These strategies are fostering a deeper understanding of mineral co-occurrences and, for the first time, facilitating predictions of mineral species that occur on Earth but have yet to be discovered and described.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10

References

[ 1 ] Gastil G. The distribution of mineral dates in time and space. Am J Sci 1960;258 (1):1–35. link1

[ 2 ] Nash JT, Granger HC, Adams SS. Geology and concepts of genesis of important types of uranium deposits. Econ Geol 1981:63–116. link1

[ 3 ] Zhabin AG. Is there evolution of mineral speciation on Earth? Dokl Earth Sci Sect 1981;247:142–4. link1

[ 4 ] Yushkin NP. Evolutionary ideas in modern mineralogy. Zap Vses Mineral Obshch 1982;116(4):432–42. Russian.

[ 5 ] Hazen RM, Papineau D, Bleeker W, Downs RT, Ferry J, McCoy T, et al. Mineral evolution. Am Mineral 2008;93(11–12):1693–720. link1

[ 6 ] Hazen RM, Ewing RJ, Sverjensky DA. Evolution of uranium and thorium minerals. Am Mineral 2009;94(10):1293–311. link1

[ 7 ] Hazen RM, Bekker A, Bish DL, Bleeker W, Downs RT, Farquhar J, et al. Needs and opportunities in mineral evolution research. Am Mineral 2011;96(7):953–63. link1

[ 8 ] Hazen RM, Golden JJ, Downs RT, Hysted G, Grew ES, Azzolini D, et al. Mercury (Hg) mineral evolution: a mineralogical record of supercontinent assembly, changing ocean geochemistry, and the emerging terrestrial biosphere. Am Mineral 2012;97(7):1013–42. link1

[ 9 ] Hazen RM, Papineau D. Mineralogical co-evolution of the geosphere and biosphere. In: Knoll AH, Canfield DE, Konhauser KO, editors. Fundamentals of geobiology. Oxford: Wiley-Blackwell; 2012. p. 333–50. link1

[10] Hazen RM, Jones AP, Kah L, Sverjensky DA. Carbon mineral evolution. In: Hazen RM, Jones AP, Baross J, editors. Carbon in Earth. Washington, DC: Mineralogical Society of America; 2013. p. 79–107. link1

[11] Hazen RM, Sverjensky DA, Azzolini D, Bish DL, Elmore S, Hinnov L, et al. Clay mineral evolution. Am Mineral 2013;98(11–12):2007–29. link1

[12] Hazen RM, Liu XM, Downs RT, Golden JJ, Pires AJ, Grew ES, et al. Mineral evolution: episodic metallogenesis, the supercontinent cycle, and the coevolving geosphere and biosphere. Soc Econ Geolog Special Pub 2014;18:1–15. link1

[13] Hazen RM, Grew ES, Origlieri M, Downs RT. On the mineralogy of the ‘‘Anthropocene Epoch”. Am Mineral 2017;102(3):595–611. link1

[14] Hazen RM. Evolution of minerals. Sci Am 2010;302(3):58–65. link1

[15] Hazen RM. Paleomineralogy of the Hadean Eon: a preliminary list. Am J Sci 2013;313(9):807–43. link1

[16] Hazen RM. Mineral evolution, the Great Oxidation Event, and the rise of colorful minerals. Mineralog Record 2015;46(805–816):34. link1

[17] Hazen RM. An evolutionary system of mineralogy: proposal for a classification based on natural kind clustering. Am Mineral. In press.

[18] Hazen RM, Eldredge N. Themes and variations in complex systems. Elements 2010;6(1):43–6. link1

[19] Hazen RM, Ferry JM. Mineral evolution: mineralogy in the fourth dimension. Elements 2010;6(1):9–12. link1

[20] Golden J, McMillan M, Downs RT, Hystad G, Stein HJ, Zimmerman A, et al. Rhenium variations in molybdenite (MoS2): evidence for progressive subsurface oxidation. Earth Planet Sci Lett 2013;366:1–5. link1

[21] Grew ES, Hazen RM. Evolution of the minerals of beryllium. Stein 2013:4–19. link1

[22] Grew ES, Hazen RM. Beryllium mineral evolution. Am Mineral 2014;99(5–6): 999–1021. link1

[23] Krivovichev SV. Structural complexity of minerals: information storage and processing in the mineral world. Mineral Mag 2013;77(3):275–326. link1

[24] Krivovichev SV. Structural complexity of minerals and mineral parageneses: information and its evolution in the mineral world. In: Armbruster T, Danisi RM, editors. Highlights in mineralogical crystallography. Berlin/Boston: de Gruyter; 2015. p. 31–74. link1

[25] Grew ES, Dymek RF, De Hoog JCM, Harley SL, Boak JM, Hazen RM, et al. Boron isotopes in tourmaline from the 3.7–3.8 Ga Isua Belt, Greenland: sources for boron in Eoarchean continental crust and seawater. Geochim Cosmochim Acta 2015;163:156–77. link1

[26] Krivovichev SV, Krivovichev VG, Hazen RM. Structural and chemical complexity of minerals: correlations and time evolution. Eur J Mineral 2018;30(2):231–6. link1

[27] Liu C, Knoll AH, Hazen RM. Geochemical and mineralogical evidence that Rodinian assembly was unique. Nat Commun 2017;8(1):1950. link1

[28] Hystad G, Downs RT, Hazen RM. Mineral species frequency distribution conforms to a large number of rare events model: prediction of Earth’s missing minerals. Math Geosci 2015;47(6):647–61. link1

[29] Hystad G, Downs RT, Grew ES, Hazen RM. Statistical analysis of mineral diversity and distribution: Earth’s mineralogy is unique. Earth Planet Sci Lett 2015;426:154–7. link1

[30] Hystad G, Downs RT, Hazen RM, Golden JJ. Relative abundances for the mineral species on Earth: a statistical measure to characterize Earth-like planets based on Earth’s mineralogy. Math Geosci 2017;49(2):179–94. link1

[31] Hazen RM, Grew ES, Downs RT, Golden J, Hystad G. Mineral ecology: chance and necessity in the mineral diversity of terrestrial planets. Can Mineral 2015;53(2):295–323. link1

[32] Hazen RM, Hystad G, Downs RT, Golden J, Pires A, Grew ES. Earth’s ‘‘missing” minerals. Am Mineral 2015;100(10):2344–7. link1

[33] Hazen RM, Hummer DR, Hystad G, Downs RT, Golden JJ. Carbon mineral ecology: predicting the undiscovered minerals of carbon. Am Mineral 2016;101(4):889–906. link1

[34] Hazen RM, Hystad G, Golden JJ, Hummer DR, Liu C, Downs RT, et al. Cobalt mineral ecology. Am Mineral 2017;102(1):108–16. link1

[35] Grew ES, Krivovichev SV, Hazen RM, Hystad G. Evolution of structural complexity in boron minerals. Can Mineral 2016;54(1):125–43. link1

[36] Grew ES, Hystad G, Hazen RM, Krivovichev SV, Gorelova LA. How many boron minerals occur in Earth’s upper crust? Am Mineral 2017;102(8): 1573–87. link1

[37] Hazen RM, Ausubel J. On the nature and significance of rarity in mineralogy. Am Mineral 2016;101(6):1245–51. link1

[38] Liu C, Hystad G, Golden JJ, Hummer DR, Downs RT, Morrison SM, et al. Chromium mineral ecology. Am Mineral 2017;102(3):612–9. link1

[39] Liu C, Eleish A, Hystad G, Golden JJ, Downs RT, Morrison SM, et al. Analysis and visualization of vanadium mineral diversity and distribution. Am Mineral 2018;103(7):1080–6. link1

[40] Morrison SM, Liu C, Eleish A, Prabhu A, Li C, Ralph J, et al. Network analysis of mineralogical systems. Am Mineral 2017;102(8):1588–96. link1

[41] Downs RT. The RRUFF project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. In: Proceedings of the 19th General Meeting of the International Mineralogical Association; 2006 July 23–28; Kobe, Japan; 2006.

[42] Lehnert KA, Walker D, Sarbas B. EarthChem: a geochemistry data network. Geochim Cosmochim Acta 2007;71:A559. link1

[43] Wilkinson MD, Dumontier M, Aalbersberg IJ, Appleton G, Axton M, Baak A, et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 2016;3:160018. link1

[44] Fox P, Hendler J. Changing the equation on scientific data visualization. Science 2011;331(6018):705–8. link1

[45] Hazen RM. Data-driven abductive discovery in mineralogy. Am Mineral 2014;99(11–12):2165–70. link1

[46] Papike JJ, editor. Planetary materials. Chantilly: Mineralogical Society of America; 1998. link1

[47] Morrison SM, Downs RT, Blake DF, Vaniman DT, Ming DW, Rampe EB, et al. Crystal chemistry of martian minerals from Bradbury Landing through Naukluft Plateau, Gale crater, Mars. Am Mineral 2018;103(6):857–71. link1

[48] Liu XM, Kah LC, Knoll AH, Cui H, Kaufman AJ, Shahar A, et al. Tracing Earth’s CO2 evolution using Zn/Fe ratios in marine carbonate. Geochem Perspect Lett 2016;2:24–34. link1

[49] Carroll SB. Chance and necessity: the evolution of morphological complexity and diversity. Nature 2001;409(6823):1102–9. link1

[50] Ma X, Hummer D, Golden JJ, Fox PA, Hazen RM, Morrison SM, et al. Using visualized exploratory data analysis to facilitate collaboration and hypothesis generation in cross-disciplinary research. ISPRS Int J Geoinf 2017;6(11):368. link1

[51] Otte E, Rousseau R. Social network analysis: a powerful strategy, also for the information sciences. J Inf Sci 2002;28(6):441–53. link1

[52] Abraham A, Hassanien AE, Snasel V, editors. Computational social network analysis: trends, tools and research advances. New York: Springer; 2010. link1

[53] Pinheiro CAR. Social network analysis in telecommunications. Hoboken: Wiley; 2011. link1

[54] Kadushin C. Understanding social networks. New York: Oxford University Press; 2012. link1

[55] Hwang N, Houghtalen R. Fundamentals of hydraulic engineering systems. Upper Saddle River: Prentice Hall; 1996. link1

[56] Guimerà R, Mossa S, Turtschi A, Amaral LAN. The worldwide air transportation network: anomalous centrality, community structure, and cities’ global roles. Proc Natl Acad Sci USA 2005;102(22):7794–9. link1

[57] Dong W, Pentland A. A network analysis of road traffic with vehicle tracking data. In: Proceedings of the American Association of Artificial Intelligence, Spring Symposium, Human Behavior Modeling; 2009 Mar 23–25; Palo Alto, CA, USA; 2009. p. 7–12.

[58] Pagani GA, Aiello M. The power grid as a complex network: a survey. Phys A 2013;392(11):2688–700. link1

[59] Amitai G, Shemesh A, Sitbon E, Shklar M, Netanely D, Venger I, et al. Network analysis of protein structures identifies functional residues. J Mol Biol 2004;344(4):1135–46. link1

[60] Banda-R K, Delgado-Salinas A, Dexter KG, Linares-Palomino R, Oliveira-Filho A, Prado D, et al. Plant diversity patterns in neotropical dry forests and their conservation implications. Science 2016;353(6306):1383–7. link1

[61] Corel E, Lopez P, Méheust R, Bapteste E. Network-thinking: graphs to analyze microbial complexity and evolution. Trends Microbiol 2016;24(3):224–37. link1

[62] Muscente AD, Prabhu A, Zhong H, Eleish A, Meyer MB, Fox P, et al. Quantifying ecological impacts of mass extinctions with network analysis of fossil communities. Proc Natl Acad Sci USA 2018;115(20):5217–22. link1

[63] Kolaczyk ED. Statistical analysis of network data. New York: Springer; 2009. link1

[64] Newman MEJ. Networks: an introduction. New York: Oxford University Press; 2013. link1

[65] Asratian AS, Denley TMJ, Häggkvist R. Bipartite graphs and their applications. New York: Cambridge University Press; 1998. link1

[66] Adomavicius G, Tuzhilin A. Context-aware recommender systems. In: Ricci F, Rokach L, Shapira B, Kantor PB, editors. Recommender systems handbook. Boston: Springer; 2011. p. 217–53. link1

[67] Ricci F, Rokach L, Shapira B. Introduction to recommender systems handbook. In: Ricci F, Rokach L, Shapira B, Kantor PB, editors. Recommender systems handbook. Boston: Springer; 2011. p. 1–35. link1

[68] Panniello U, Tuzhilin A, Gorgoglione M. Comparing context-aware recommender systems in terms of accuracy and diversity. User Model Useradapt Interact 2014;24(1–2):35–65. link1

[69] Gagné OC, Hawthorne FC. Bond-length distributions for ions bonded to oxygen: alkali and alkaline-earth metals. Acta Crystallogr B Struct Sci Cryst Eng Mater 2016;72(Pt 4):602–25. link1

[70] Gagné OC, Hawthorne FC. Bond-length distributions for ions bonded to oxygen: results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO4. Acta Crystallogr B 2018;74:79–96. link1

[71] Gagné OC, Hawthorne FC. Bond-length distributions for ions bonded to oxygen: metalloids and post-transition metals. Acta Crystallogr B 2018;74: 63–78. link1

[72] Gagné OC, Hawthorne FC. Bond-length distributions for ions bonded to oxygen: results for the transition metals and discussion of d0 cations and the Jahn-Teller effect. Acta Cryst B 2018;74(Pt 1):79–96. link1

[73] Gagné OC. Bond-length distributions for ions bonded to oxygen: results for the lanthanides and actinides and discussion of the f-block contraction. Acta Crystallogr B 2018;74:49–62. link1

[74] Gagné OC, Mercier PHJ, Hawthorne FC. A priori bond-valence and bondlength calculations in rock-forming minerals. Acta Crystallogr B 2018;74: 470–82. link1

[75] Gagné OC, Hawthorne FC. Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallogr B Struct Sci Cryst Eng Mater 2015;71(Pt 5):562–78. link1

[76] Schutt R, O’Neil C. Doing data science: straight talk from the frontline. New York: O’Reilly; 2013. link1

[77] Kitchin R. The data revolution: big data, open data, data infrastructures & their consequences. London: Sage; 2014. link1

Related Research