Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 13, Issue 6 doi: 10.1016/j.eng.2020.11.005

Impact of Polymyxin Resistance on Virulence and Fitness among Clinically Important Gram-Negative Bacteria

State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China

Received: 2020-07-15 Revised: 2020-09-20 Accepted: 2021-11-15 Available online: 2021-01-26

Next Previous

Abstract

Humanity is facing an enormous and growing worldwide threat from the emergence of multi-drugresistant (MDR) Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, and Acinetobacter baumannii. Polymyxin B and E (colistin) constitute the last-line therapies for treating MDR Gram-negative bacteria. Polymyxin is a cationic antibacterial peptide that can destroy the outer membrane of Gram-negative bacteria. With the increasing clinical application of polymyxin, however, there have been many reports of the occurrence of polymyxin-resistant Gram-negative bacteria. This resistance is mainly mediated by the modification or complete loss of lipopolysaccharide (LPS). LPS is also a virulence factor of Gram-negative bacteria, and alterations of LPS may correlate with virulence. Although it is generally believed that the biological costs associated with drug resistance may enable benign susceptible bacteria to overcome resistant bacteria when antibiotic pressure is reduced, some studies have shown that polymyxin-resistant bacteria are associated with higher virulence and greater fitness compared with their susceptible counterparts. To predict the development of polymyxin resistance and evaluate interventions for its mitigation, it is important to understand the relative biological cost of polymyxin resistance compared with susceptibility. The impact of polymyxin resistance mechanisms on the virulence and fitness of these three Gram-negative bacteria are summarized in this review.

SupplementaryMaterials

Figures

Fig. 1

Fig. 2

References

[ 1 ] Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-prevalence survey of health care-associated infections. N Engl J Med 2014;370(13):1198–208. link1

[ 2 ] Hu F, Guo Y, Yang Y, Zheng Y, Wu S, Jiang X, et al. Resistance reported from China antimicrobial surveillance network (CHINET) in 2018. Eur J Clin Microbiol Infect Dis 2019;38(12):2275–81. link1

[ 3 ] Wang Q, Wang Z, Zhang F, Zhao C, Yang B, Sun Z, et al. Long-term continuous antimicrobial resistance surveillance among nosocomial Gram-negative bacilli in China from 2010 to 2018 (CMSS). Infect Drug Resist 2020;13:2617–29. link1

[ 4 ] World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics [Internet]. Geneva: World Health Organization; 2017 Oct 2 [cited 2020 Sep 1]. Available from: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_ 25Feb-ET_NM_WHO.pdf. link1

[ 5 ] Gales AC, Jones RN, Sader HS. Contemporary activity of colistin and polymyxin B against a worldwide collection of Gram-negative pathogens: results from the SENTRY Antimicrobial Surveillance Program (2006-09). J Antimicrob Chemother 2011;66(9):2070–4. link1

[ 6 ] Bialvaei AZ, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance. Curr Med Res Opin 2015;31(4):707–21. link1

[ 7 ] Marchaim D, Chopra T, Pogue JM, Perez F, Hujer AM, Rudin S, et al. Outbreak of colistin-resistant, carbapenem-resistant Klebsiella pneumoniae in metropolitan Detroit, Michigan. Antimicrob Agents Chemother 2011;55(2):593–9. link1

[ 8 ] Monaco M, Giani T, Raffone M, Arena F, Garcia-Fernandez A, Pollini S, et al. Colistin resistance superimposed to endemic carbapenem-resistant Klebsiella pneumoniae: a rapidly evolving problem in Italy, November 2013 to April 2014. Euro Surveill 2014;19(42):20939.

[ 9 ] Pena I, Picazo JJ, Rodríguez-Avial C, Rodríguez-Avial I. Carbapenemaseproducing Enterobacteriaceae in a tertiary hospital in Madrid, Spain: high percentage of colistin resistance among VIM-1-producing Klebsiella pneumoniae ST11 isolates. Int J Antimicrob Agents 2014;43(5):460–4. link1

[10] Meletis G, Oustas E, Botziori C, Kakasi E, Koteli A. Containment of carbapenem resistance rates of Klebsiella pneumoniae and Acinetobacter baumannii in a Greek hospital with a concomitant increase in colistin, gentamicin and tigecycline resistance. New Microbiol 2015;38(3):417–21.

[11] European Centre for Disease Prevention and Control (ECDC). Antimicrobial resistance surveillance in Europe 2013. Stockholm: ECDC; 2014. link1

[12] Shen Z, Wang Y, Shen Y, Shen J, Wu C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. Lancet Infect Dis 2016;16(3):293. link1

[13] Kabanov DS, Prokhorenko IR. Structural analysis of lipopolysaccharides from Gram-negative bacteria. Biochemistry 2010;75(4):383–404. link1

[14] Teo JQM, Chang CWT, Leck H, Tang CY, Lee SJY, Cai Y, et al. Risk factors and outcomes associated with the isolation of polymyxin B and carbapenemresistant Enterobacteriaceae spp.: a case-control study. Int J Antimicrob Agents 2019;53(5):657–62. link1

[15] Qureshi ZA, Hittle LE, O’Hara JA, Rivera JI, Syed A, Shields RK, et al. Colistinresistant Acinetobacter baumannii: beyond carbapenem resistance. Clin Infect Dis 2015;60(9):1295–303.

[16] Tsuji BT, Pogue JM, Zavascki AP, Paul M, Daikos GL, Forrest A, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019;39(1):10–39. link1

[17] Saidel-Odes L, Polachek H, Peled N, Riesenberg K, Schlaeffer F, Trabelsi Y, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol 2012;33(1):14–9. link1

[18] De Jonge E, Schultz MJ, Spanjaard L, Bossuyt PMM, Vroom MB, Dankert J, et al. Effects of selective decontamination of digestive tract on mortality and acquisition of resistant bacteria in intensive care: a randomised controlled trial. Lancet 2003;362(9389):1011–6. link1

[19] Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 2003;67(4):593–656. link1

[20] Pagès JM, James CE, Winterhalter M. The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol 2008;6(12):893–903. link1

[21] Cardoso LS, Araujo MI, Góes AM, Pacífico LG, Oliveira RR, Oliveira SC. Polymyxin B as inhibitor of LPS contamination of Schistosoma mansoni recombinant proteins in human cytokine analysis. Microb Cell Fact 2007;6 (1):1. link1

[22] Hancock REW, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci USA 2000;97(16):8856–61. link1

[23] Pristovsek P, Kidric J. The search for molecular determinants of LPS inhibition by proteins and peptides. Curr Top Med Chem 2004;4(11):1185–201. link1

[24] Clausell A, Garcia-Subirats M, Pujol M, Busquets MA, Rabanal F, Cajal Y. Gramnegative outer and inner membrane models: insertion of cyclic cationic lipopeptides. J Phys Chem B 2007;111(3):551–63. link1

[25] Powers JPS, Hancock REW. The relationship between peptide structure and antibacterial activity. Peptides 2003;24(11):1681–91. link1

[26] Velkov T, Thompson PE, Nation RL, Li J. Structure–activity relationships of polymyxin antibiotics. J Med Chem 2010;53(5):1898–916. link1

[27] Deris ZZ, Akter J, Sivanesan S, Roberts KD, Thompson PE, Nation RL, et al. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J Antibiot 2014;67(2):147–51. link1

[28] Mogi T, Murase Y, Mori M, Shiomi K, Omura S, Paranagama MP, et al. Polymyxin B identified as an inhibitor of alternative NADH dehydrogenase and malate: quinone oxidoreductase from the Gram-positive bacterium Mycobacterium smegmatis. J Biochem 2009;146(4):491–9. link1

[29] Deris ZZ, Swarbrick JD, Roberts KD, Azad MAK, Akter J, Horne AS, et al. Probing the penetration of antimicrobial polymyxin lipopeptides into Gram-negative bacteria. Bioconjugate Chem 2014;25(4):750–60. link1

[30] Velkov T, Deris ZZ, Huang JX, Azad MAK, Butler M, Sivanesan S, et al. Surface changes and polymyxin interactions with a resistant strain of Klebsiella pneumoniae. Innate Immun 2014;20(4):350–63. link1

[31] Gunn JS. The Salmonella PmrAB regulon: lipopolysaccharide modifications, antimicrobial peptide resistance and more. Trends Microbiol 2008;16 (6):284–90. link1

[32] Chen HD, Groisman EA. The biology of the PmrA/PmrB two-component system: the major regulator of lipopolysaccharide modifications. Annu Rev Microbiol 2013;67(1):83–112. link1

[33] Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 2017;30(2):557–96. link1

[34] Groisman EA. The pleiotropic two-component regulatory system PhoP–PhoQ. J Bacteriol 2001;183(6):1835–42. link1

[35] Park SY, Groisman EA. Signal-specific temporal response by the Salmonella PhoP/PhoQ regulatory system. Mol Microbiol 2014;91(1):135–44. link1

[36] Yuan J, Jin F, Glatter T, Sourjik V. Osmosensing by the bacterial PhoQ/PhoP two-component system. Proc Natl Acad Sci USA 2017;114(50):E10792–8. link1

[37] Mitrophanov AY, Jewett MW, Hadley TJ, Groisman EA. Evolution and dynamics of regulatory architectures controlling polymyxin B resistance in enteric bacteria. PLoS Genet 2008;4(10):e1000233. link1

[38] Wright MS, Suzuki Y, Jones MB, Marshall SH, Rudin SD, van Duin D, et al. Genomic and transcriptomic analyses of colistin-resistant clinical isolates of Klebsiella pneumoniae reveal multiple pathways of resistance. Antimicrob Agents Chemother 2015;59(1):536–43. link1

[39] Nordmann P, Jayol A, Poirel L. Rapid detection of polymyxin resistance in Enterobacteriaceae. Emerg Infect Dis 2016;22(6):1038–43. link1

[40] Cheng YH, Lin TL, Pan YJ, Wang YP, Lin YT, Wang JT. Colistin resistance mechanisms in Klebsiella pneumoniae strains from Taiwan. Antimicrob Agents Chemother 2015;59(5):2909–13. link1

[41] Olaitan AO, Diene SM, Kempf M, Berrazeg M, Bakour S, Gupta SK, et al. Worldwide emergence of colistin resistance in Klebsiella pneumoniae from healthy humans and patients in Lao PDR, Thailand, Israel, Nigeria and France owing to inactivation of the PhoP/PhoQ regulator mgrB: an epidemiological and molecular study. Int J Antimicrob Agents 2014;44(6):500–7. link1

[42] Cannatelli A, Giani T, D’Andrea MM, Di Pilato V, Arena F, Conte V, et al. MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother 2014;58 (10):5696–703. link1

[43] Poirel L, Jayol A, Bontron S, Villegas MV, Özdamar M, Türkoglu S, et al. The mgrB gene as a key target for acquired resistance to colistin in Klebsiella pneumoniae. J Antimicrob Chemother 2015;70(1):75–80. link1

[44] López-Camacho E, Gómez-Gil R, Tobes R, Manrique M, Lorenzo M, Galván B, et al. Genomic analysis of the emergence and evolution of multidrug resistance during a Klebsiella pneumoniae outbreak including carbapenem and colistin resistance. J Antimicrob Chemother 2014;69(3):632–6. link1

[45] Lippa AM, Goulian M. Feedback inhibition in the PhoQ/PhoP signaling system by a membrane peptide. PLoS Genet 2009;5(12):e1000788. link1

[46] Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R, Spencer J, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 2016;16(2):161–8. link1

[47] Yin W, Li H, Shen Y, Liu Z, Wang S, Shen Z, et al. Novel plasmid-mediated colistin resistance gene mcr-3 in Escherichia coli. mBio 2017;8(3):e00543-17. link1

[48] Xavier BB, Lammens C, Ruhal R, Kumar-Singh S, Butaye P, Goossens H, et al. Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Euro Surveill 2016;21(27):30280. link1

[49] Wang X, Wang Y, Zhou Y, Wang Z, Wang Y, Zhang S, et al. Emergence of colistin resistance gene mcr-8 and its variant in Raoultella ornithinolytica. Front Microbiol 2019;10:228. link1

[50] Carroll LM, Gaballa A, Guldimann C, Sullivan G, Henderson LO, Wiedmann M. Identification of novel mobilized colistin resistance gene mcr-9 in a multidrugresistant, colistin-susceptible Salmonella enterica serotype Typhimurium isolate. mBio 2019;10(3):e00853-19. link1

[51] Borowiak M, Hammerl JA, Deneke C, Fischer J, Szabo I, Malorny B. Characterization of mcr-5-harboring Salmonella enterica subsp. enterica serovar Typhimurium isolates from animal and food origin in Germany. Antimicrob Agents Chemother 2019;63(6):e00063-19. link1

[52] Skov RL, Monnet DL. Plasmid-mediated colistin resistance (mcr-1 gene): three months later, the story unfolds. Euro Surveill 2016;21(9):30155. link1

[53] Moffatt JH, Harper M, Adler B, Nation RL, Li J, Boyce JD. Insertion sequence ISAba11 is involved in colistin resistance and loss of lipopolysaccharide in Acinetobacter baumannii. Antimicrob Agents Chemother 2011;55(6):3022–4. link1

[54] Moffatt JH, Harper M, Harrison P, Hale JDF, Vinogradov E, Seemann T, et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 2010;54 (12):4971–7. link1

[55] Bojkovic J, Richie DL, Six DA, Rath CM, Sawyer WS, Hu Q, et al. Characterization of an Acinetobacter baumannii lptD deletion strain: permeability defects and response to inhibition of lipopolysaccharide and fatty acid biosynthesis. J Bacteriol 2016;198(4):731–41. link1

[56] Fresno S, Jiménez N, Izquierdo L, Merino S, Corsaro MM, De Castro C, et al. The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology 2006;152(Pt 6):1807–18.

[57] Casadevall A, Pirofski LA. The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 2003;1(1):17–24. link1

[58] Baeuerlein A, Ackermann S, Parlesak A. Transepithelial activation of human leukocytes by probiotics and commensal bacteria: role of Enterobacteriaceaetype endotoxin. Microbiol Immunol 2009;53(4):241–50. link1

[59] Beutler BA. TLRs and innate immunity. Blood 2009;113(7):1399–407. link1

[60] Paczosa MK, Mecsas J. Klebsiella pneumoniae: going on the offense with a strong defense. Microbiol Mol Biol Rev 2016;80(3):629–61. link1

[61] Kaper JB, Nataro JP, Mobley HL. Pathogenic Escherichia coli. Nat Rev Microbiol 2004;2(2):123–40. link1

[62] Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2018;16(2):91–102. link1

[63] Hornsey M, Loman N, Wareham DW, Ellington MJ, Pallen MJ, Turton JF, et al. Whole-genome comparison of two Acinetobacter baumannii isolates from a single patient, where resistance developed during tigecycline therapy. J Antimicrob Chemother 2011;66(7):1499–503.

[64] Oliver A. Mutators in cystic fibrosis chronic lung infection: prevalence, mechanisms, and consequences for antimicrobial therapy. Int J Med Microbiol 2010;300(8):563–72. link1

[65] Choi AHK, Slamti L, Avci FY, Pier GB, Maira-Litrán T. The pgaABCD locus of Acinetobacter baumannii encodes the production of poly-b-1-6-Nacetylglucosamine, which is critical for biofilm formation. J Bacteriol 2009;191(19):5953–63. link1

[66] Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol 2010;8(4):260–71. link1

[67] Diard M, Hardt WD. Evolution of bacterial virulence. FEMS Microbiol Rev 2017;41(5):679–97. link1

[68] Hraiech S, Roch A, Lepidi H, Atieh T, Audoly G, Rolain JM, et al. Impaired virulence and fitness of a colistin-resistant clinical isolate of Acinetobacter baumannii in a rat model of pneumonia. Antimicrob Agents Chemother 2013;57(10):5120–1. link1

[69] López-Rojas R, McConnell MJ, Jiménez-Mejías ME, Domínguez-Herrera J, Fernández-Cuenca F, Pachón J. Colistin resistance in a clinical Acinetobacter baumannii strain appearing after colistin treatment: effect on virulence and bacterial fitness. Antimicrob Agents Chemother 2013;57(9):4587–9. link1

[70] Leite GC, Stabler RA, Neves P, Perdigão Neto LV, Ruedas Martins RC, Rizek C, et al. Genetic and virulence characterization of colistin-resistant and colistinsensitive A. baumannii clinical isolates. Diagn Microbiol Infect Dis 2019;95 (1):99–101. link1

[71] Jones CL, Singh SS, Alamneh Y, Casella LG, Ernst RK, Lesho EP, et al. In vivo fitness adaptations of colistin-resistant Acinetobacter baumannii isolates to oxidative stress. Antimicrob Agents Chemother 2017;61(3):e00598-16. link1

[72] Pournaras S, Poulou A, Dafopoulou K, Chabane YN, Kristo I, Makris D, et al. Growth retardation, reduced invasiveness, and impaired colistin-mediated cell death associated with colistin resistance development in Acinetobacter baumannii. Antimicrob Agents Chemother 2014;58(2):828–32. link1

[73] Dafopoulou K, Xavier BB, Hotterbeekx A, Janssens L, Lammens C, Dé E, et al. Colistin-resistant Acinetobacter baumannii clinical strains with deficient biofilm formation. Antimicrob Agents Chemother 2016;60(3):1892–5. link1

[74] Dahdouh E, Gómez-Gil R, Sanz S, González-Zorn B, Daoud Z, Mingorance J, et al. A novel mutation in pmrB mediates colistin resistance during therapy of Acinetobacter baumannii. Int J Antimicrob Agents 2017;49(6):727–33. link1

[75] Durante-Mangoni E, Del Franco M, Andini R, Bernardo M, Giannouli M, Zarrilli R. Emergence of colistin resistance without loss of fitness and virulence after prolonged colistin administration in a patient with extensively drug-resistant Acinetobacter baumannii. Diagn Microbiol Infect Dis 2015;82(3):222–6. link1

[76] Gerson S, Betts JW, Lucaßen K, Nodari CS, Wille J, Josten M, et al. Investigation of novel pmrB and eptA mutations in isogenic Acinetobacter baumannii isolates associated with colistin resistance and increased virulence in vivo. Antimicrob Agents Chemother 2019;63(3):e01586-18. link1

[77] Fernández-Reyes M, Rodríguez-Falcón M, Chiva C, Pachón J, Andreu D, Rivas L. The cost of resistance to colistin in Acinetobacter baumannii: a proteomic perspective. Proteomics 2009;9(6):1632–45. link1

[78] López-Rojas R, García-Quintanilla M, Labrador-Herrera G, Pachón J, McConnell MJ. Impaired growth under iron-limiting conditions associated with the acquisition of colistin resistance in Acinetobacter baumannii. Int J Antimicrob Agents 2016;47(6):473–7. link1

[79] Wand ME, Bock LJ, Bonney LC, Sutton JM. Retention of virulence following adaptation to colistin in Acinetobacter baumannii reflects the mechanism of resistance. J Antimicrob Chemother 2015;70(8):2209–16. link1

[80] Beceiro A, Moreno A, Fernández N, Vallejo JA, Aranda J, Adler B, et al. Biological cost of different mechanisms of colistin resistance and their impact on virulence in Acinetobacter baumannii. Antimicrob Agents Chemother 2014;58 (1):518–26. link1

[81] López-Rojas R, Domínguez-Herrera J, McConnell MJ, Docobo-Peréz F, Smani Y, Fernández-Reyes M, et al. Impaired virulence and in vivo fitness of colistinresistant Acinetobacter baumannii. J Infect Dis 2011;203(4):545–8. link1

[82] Mu X, Wang N, Li X, Shi K, Zhou Z, Yu Y, et al. The effect of colistin resistanceassociated mutations on the fitness of Acinetobacter baumannii. Front Microbiol 2016;7:1715. link1

[83] Carretero-Ledesma M, García-Quintanilla M, Martín-Peña R, Pulido MR, Pachón J, McConnell MJ. Phenotypic changes associated with colistin resistance due to lipopolysaccharide loss in Acinetobacter baumannii. Virulence 2018;9(1):930–42. link1

[84] Espinal P, Pantel A, Rolo D, Marti S, López-Rojas R, Smani Y, et al. Relationship between different resistance mechanisms and virulence in Acinetobacter baumannii. Microb Drug Resist 2019;25(5):752–60. link1

[85] Vila-Farrés X, Ferrer-Navarro M, Callarisa AE, Martí S, Espinal P, Gupta S, et al. Loss of LPS is involved in the virulence and resistance to colistin of colistinresistant Acinetobacter nosocomialis mutants selected in vitro. J Antimicrob Chemother 2015;70(11):2981–6. link1

[86] Wand ME, Bock LJ, Sutton JM. Retention of virulence following colistin adaptation in Klebsiella pneumoniae is strain-dependent rather than associated with specific mutations. J Med Microbiol 2017;66(7):959–64.

[87] Choi MJ, Ko KS. Loss of hypermucoviscosity and increased fitness cost in colistin-resistant Klebsiella pneumoniae sequence type 23 strains. Antimicrob Agents Chemother 2015;59(11):6763–73. link1

[88] Arena F, Henrici De Angelis L, Cannatelli A, Di Pilato V, Amorese M, D’Andrea MM, et al. Colistin resistance caused by inactivation of the mgrB regulator is not associated with decreased virulence of sequence type 258 KPC carbapenemase-producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2016;60(4):2509–12. link1

[89] Cannatelli A, Santos-Lopez A, Giani T, Gonzalez-Zorn B, Rossolini GM. Polymyxin resistance caused by mgrB inactivation is not associated with significant biological cost in Klebsiella pneumoniae. Antimicrob Agents Chemother 2015;59(5):2898–900. link1

[90] Kidd TJ, Mills G, Sá-Pessoa J, Dumigan A, Frank CG, Insua JL, et al. A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Mol Med 2017;9(4):430–47. link1

[91] Tietgen M, Semmler T, Riedel-Christ S, Kempf VAJ, Molinaro A, Ewers C, et al. Impact of the colistin resistance gene mcr-1 on bacterial fitness. Int J Antimicrob Agents 2018;51(4):554–61. link1

[92] Nang SC, Morris FC, McDonald MJ, Han ML, Wang J, Strugnell RA, et al. Fitness cost of mcr-1-mediated polymyxin resistance in Klebsiella pneumoniae. J Antimicrob Chemother 2018;73(6):1604–10. link1

[93] Eppelmann K, Doekel S, Marahiel MA. Engineered biosynthesis of the peptide antibiotic bacitracin in the surrogate host Bacillus subtilis. J Biol Chem 2001;276(37):34824–31. link1

[94] Wei S, Gutek A, Lilburn M, Yu Z. Abundance of pathogens in the gut and litter of broiler chickens as affected by bacitracin and litter management. Vet Microbiol 2013;166(3–4):595–601. link1

[95] Ma J, Liu J, Zhang Y, Wang D, Liu R, Liu G, et al. Bacitracin resistance and enhanced virulence of Streptococcus suis via a novel efflux pump. BMC Vet Res 2019;15(1):377. link1

[96] Dzhavakhiya VV, Glagoleva EV, Savelyeva VV, Statsyuk NV, Kartashov MI, Voinova TM, et al. New bacitracin-resistant nisin-producing strain of Lactococcus lactis and its physiological characterization. AIMS Microbiol 2018;4(4):608–21. link1

Related Research