Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Engineering >> 2022, Volume 10, Issue 3 doi: 10.1016/j.eng.2022.01.008

Machine Learning-Assisted High-Throughput Virtual Screening for On-Demand Customization of Advanced Energetic Materials

Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

Received: 2021-03-31 Revised: 2021-10-25 Accepted: 2022-01-15 Available online: 2022-02-24

Next Previous

Abstract

Finding energetic materials with tailored properties is always a significant challenge due to low research efficiency in trial and error. Herein, a methodology combining domain knowledge, a machine learning algorithm, and experiments is presented for accelerating the discovery of novel energetic materials. A high-throughput virtual screening (HTVS) system integrating on-demand molecular generation and machine learning models covering the prediction of molecular properties and crystal packing mode scoring is established. With the proposed HTVS system, candidate molecules with promising properties and a desirable crystal packing mode are rapidly targeted from the generated molecular space containing 25 112 molecules. Furthermore, a study of the crystal structure and properties shows that the good comprehensive performances of the target molecule are in agreement with the predicted results, thus verifying the effectiveness of the proposed methodology. This work demonstrates a new research paradigm for discovering novel energetic materials and can be extended to other organic materials without manifest obstacles.

Figures

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

References

[ 1 ] Gao H, Shreeve JM. Azole-based energetic salts. Chem Rev 2011;111 (11):7377–436. link1

[ 2 ] Núñez-Quintero D, Hernández-Rivera SP. Spectroscopic modeling of nitro group in explosives. In: Szu HH, editor. Proceedings Volume 6247, Independent Component Analyses, Wavelets, Unsupervised Smart Sensors, and Neural Networks IV; 2006 Apr 17–21; Orlando, FL, USA. link1

[ 3 ] Dippold AA, Klapötke TM. A study of dinitro-bis-1,2,4-triazole-1,10 -diol and derivatives: design of high-performance insensitive energetic materials by the introduction of N-oxides. J Am Chem Soc 2013;135(26):9931–8. link1

[ 4 ] Baxter AF, Martin I, Christe KO, Haiges R. Formamidinium nitroformate: an insensitive RDX alternative. J Am Chem Soc 2018;140(44):15089–98. link1

[ 5 ] Zhao G, He C, Kumar D, Hooper JP, Imler GH, Parrish DA, et al. 1,3,5-Triiodo2,4,6-trinitrobenzene (TITNB) from benzene: balancing performance and high thermal stability of functional energetic materials. Chem Eng J 2019;378:122119. link1

[ 6 ] Li S, Wang Y, Qi C, Zhao X, Zhang J, Zhang S, et al. 3D energetic metal–organic frameworks: synthesis and properties of high energy materials. Angew Chem Int Ed Engl 2013;52(52):14031–5. link1

[ 7 ] Kamlet MJ, Jacobs SJ. Chemistry of detonations. I. A simple method for calculating detonation properties of C-H–N–O explosives. J Chem Phys 1968;48(1):23–35. link1

[ 8 ] Zhang C, Shu Y, Huang Y, Zhao X, Dong H. Investigation of correlation between impact sensitivities and nitro group charges in nitro compounds. J Phys Chem B 2005;109(18):8978–82. link1

[ 9 ] Wang Y, Liu Y, Song S, Yang Z, Qi X, Wang K, et al. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun 2018;9(1):2444. link1

[10] Gu GH, Noh J, Kim I, Jung Y. Machine learning for renewable energy materials. J Mater Chem A 2019;7(29):17096–117. link1

[11] Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the ‘fourth paradigm’ of science in materials science. APL Mater 2016;4(5):053208. link1

[12] Butler KT, Davies DW, Cartwright H, Isayev O, Walsh A. Machine learning for molecular and materials science. Nature 2018;559(7715):547–55. link1

[13] Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, et al. QSAR without borders. Chem Soc Rev 2020;49(11):3525–64. Correction in: Chem Soc Rev 2020;49(11):3716. link1

[14] Lu S, Zhou Q, Ouyang Y, Guo Y, Li Q, Wang J. Accelerated discovery of stable lead-free hybrid organic–inorganic perovskites via machine learning. Nat Commun 2018;9(1):3405. link1

[15] Takahashi K, Takahashi L. Creating machine learning-driven material recipes based on crystal structure. J Phys Chem Lett 2019;10(2):283–8. link1

[16] Barnett JW, Bilchak CR, Wang Y, Benicewicz BC, Murdock LA, Bereau T, et al. Designing exceptional gas-separation polymer membranes using machine learning. Sci Adv 2020;6(20):eaaz4301. link1

[17] Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design. Engineering 2019;5(6):1017–26. link1

[18] Gómez-Bombarelli R, Aguilera-Iparraguirre J, Hirzel TD, Duvenaud D, Maclaurin D, Blood-Forsythe MA, et al. Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. Nat Mater 2016;15(10):1120–7. link1

[19] Oliynyk AO, Antono E, Sparks TD, Ghadbeigi L, Gaultois MW, Meredig B, et al. High-throughput machine-learning-driven synthesis of full-heusler compounds. Chem Mater 2016;28(20):7324–31. link1

[20] Chen G, Shen Z, Iyer A, Ghumman UF, Tang S, Bi J, et al. Machine-learningassisted de novo design of organic molecules and polymers: opportunities and challenges. Polymers (Basel) 2020;12(1):163. link1

[21] Elton DC, Boukouvalas Z, Butrico MS, Fuge MD, Chung PW. Applying machine learning techniques to predict the properties of energetic materials. Sci Rep 2018;8(1):9059. link1

[22] Kang P, Liu Z, Abou-Rachid H, Guo H. Machine-learning assisted screening of energetic materials. J Phys Chem A 2020;124(26):5341–51. link1

[23] Arús-Pous J, Johansson SV, Prykhodko O,BjerrumEJ, Tyrchan C,Reymond J-L, et al. Randomized SMILES strings improve the quality ofmolecular generativemodels. J Cheminform 2019;11(1). https://doi.org/10.1186/s13321-019-0393-0. link1

[24] Bjerrum EJ. SMILES enumeration as data augmentation for neural network modeling of molecules. 2017. arXiv:1703.07076.

[25] Solov’eva NP, Makarov VA, Granik VG. Highly polarized enamines. Chem Heterocycl Compd 1997;33(1):78–85. link1

[26] Tang Y, Ma J, Imler GH, Parrish DA, Shreeve JM. Versatile functionalization of 3,5-diamino-4-nitropyrazole for promising insensitive energetic compounds. Dalton Trans 2019;48(38):14490–6. link1

[27] Hall LH, Kier LB. Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 1995;35(6):1039–45. link1

[28] Hall LH, Story CT. Boiling point and critical temperature of a heterogeneous data set: QSAR with atom type electrotopological state indices using artificial neural net-works. J Chem Inf Comput Sci 1996;36(5):1004–14. link1

[29] Landrum G. RDKit: open-source cheminformatics. 2006.

[30] Abdi H, Williams LJ. Principal component analysis. WIREs Comp Stat 2010;2 (4):433–59. link1

[31] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res 2011;12:2825–30. link1

[32] Zhang C, Wang X, Huang H. p-Stacked interactions in explosive crystals: buffers against external mechanical stimuli. J Am Chem Soc 2008;130 (26):8359–65. link1

[33] Zhang J, Mitchell LA, Parrish DA, Shreeve JM. Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials. J Am Chem Soc 2015;137(33):10532–5. link1

[34] Song S, Wang Y, Wang K, Chen F, Zhang Q. Decoding the crystal engineering of graphite-like energetic materials: from theoretical prediction to experimental verification. J Mater Chem A 2020;8(12):5975–85. link1

[35] Ziletti A, Kumar D, Scheffler M, Ghiringhelli LM. Insightful classification of crystal structures using deep learning. Nat Commun 2018;9(1):2775. link1

[36] Ryan K, Lengyel J, Shatruk M. Crystal structure prediction via deep learning. J Am Chem Soc 2018;140(32):10158–68. link1

[37] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017;60(6):84–90. link1

[38] Gers FA, Schraudolph NN, Schmidhuber J. Learning precise timing with LSTM recurrent networks. J Mach Learn Res 2002;3:115–43. link1

[39] Weininger D. a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988;28(1): 31–6. link1

[40] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: an imperative style, high-performance deep learning library. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett R, editors. Advances in neural information processing systems (NeurIPS 2019); 2019 Dec 8–14; Vancouver, BC, Canada. p. 8026–37. link1

[41] Moret M, Friedrich L, Grisoni F, Merk D, Schneider G. Generative molecular design in low data regimes. Nat Mach Intell 2020;2(3):171–80. link1

[42] Gani R, Brignole EA. Molecular design of solvents for liquid extraction based on UNIFAC. Fluid Phase Equilib 1983;13:331–40. link1

[43] Sumita M, Yang X, Ishihara S, Tamura R, Tsuda K. Hunting for organic molecules with artificial intelligence: molecules optimized for desired excitation energies. ACS Cent Sci 2018;4(9):1126–33. link1

[44] Gao H, Zhang Q, Shreeve JM. Fused heterocycle-based energetic materials (2012–2019). J Mater Chem A 2020;8(8):4193–216. link1

[45] Chen S, Liu Y, Feng Y, Yang X, Zhang Q. 5,6-Fused bicyclic tetrazolo-pyridazine energetic materials. Chem Commun 2020;56(10):1493–6. link1

[46] Tsyshevsky R, Smirnov AS, Kuklja MM. Comprehensive end-to-end design of novel high energy density materials: III. Fused heterocyclic energetic compounds. J Phys Chem C 2019;123(14):8688–98. link1

[47] Schulze MC, Scott BL, Chavez DE. A high density pyrazolo-triazine explosive (PTX). J Mater Chem A 2015;3(35):17963–5. link1

[48] Yao W, Xue Y, Qian L, Yang H, Cheng G. Combination of 1,2,3-triazole and 1,2,4-triazole frameworks for new high-energy and low-sensitivity compounds. Energ Mater Front 2021;2(2):131–8. link1

[49] Cao Y, Lai W, Yu T, Ma Y, Liu Y, Wang B. Graphite-like packing modes facilitating high thermal stability: a comparative study in the polymorphs of planar energetic molecules. Cryst Growth Des 2021;21(6):3175–8. link1

[50] Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision D.01. Wallingford: Gaussian, Inc.; 2013. link1

[51] Lu T, Chen F. Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 2012;33(5):580–92. link1

[52] Mathieu D. Sensitivity of energetic materials: theoretical relationships to detonation performance and molecular structure. Ind Eng Chem Res 2017;56 (29):8191–201. link1

[53] Song S, Chen F, Wang Y, Wang K, Yan M, Zhang Q. Accelerating the discovery of energetic melt-castable materials by a high-throughput virtual screening and experimental approach. J Matter Chem A 2021;9(38):21723–31. link1

Related Research