Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2019, Volume 21, Issue 6 doi: 10.15302/J-SSCAE-2019.06.007

Polar Animal Genetic Resources: Current Situation and Development Strategies

1. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, Shandong, China;

2. Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, Shandong, China

Funding project:中国工程院咨询项目 “海洋强国战略研究2035” (2018-ZD-08) Received: 2019-06-20 Revised: 2019-08-26

Next Previous

Abstract

This article has reviewed the current status of polar animal genetic resources and proposed the development strategies based on existing problems. Genome sequencing of polar animals started late, and the whole genome sequencing has been conducted so far on only 13 polar animals. Transcriptome sequencing has been carried out for 31 polar animals in recent years, and the transcriptome research has focused on adaption to polar environments, molecular mechanisms in response to pollutant stresses, transcriptome changes during various development stages or within different tissues, and exploitation of functional genes. The late initiation in the study of polar animal genetic resources limited its current depth and width in research. However, this study is strategically important. We suggest that China set up a key research and development program “exploration and application of biological gene resources in polar animals” to support the work in this field, and focus on genetic dissection of special traits, functional analysis of specific genes, and development of genetically engineered products.

Figures

Fig. 1

Fig. 2

References

[ 1 ] Star B, Nederbragt A J, Jentoft S, et al. The genome sequence of Atlantic cod reveals a unique immune system [J]. Nature, 2011, 477(7363): 207–210. link1

[ 2 ] Miller W, Schuster S C, Welch A J, et al. Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change [J]. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109(36): E2382– 2390. link1

[ 3 ] Shin S C, Ahn D H, Kim S J C, et al. The genome sequence of the Antarctic bullhead notothen reveals evolutionary adaptations to a cold environment [J]. Genome Biology, 2014, 15(9): 468. link1

[ 4 ] Yim H S, Cho Y S, Guang X, et al, Minke whale genome and aquatic adaptation in cetaceans [J]. Nature Genetics, 2014, 46(1): 88–92. link1

[ 5 ] Kelley J L, Peyton J T, Fiston-Lavier A S, et al, Compact genome of the Antarctic midge is likely an adaptation to an extreme environment [J]. Nature Communications, 2014, 5: 4611. link1

[ 6 ] Li C, Zhang Y, Li J, et al. Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment [J]. GigaScience, 2014, 3(1): 27. link1

[ 7 ] Lien S, Koop B F, Sandve S R, et al. The Atlantic salmon genome provides insights into rediploidization [J]. Nature, 2016, 533(7602): 200–205. link1

[ 8 ] Ahn D H, Shin S C, Kim B M, et al. Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti [J]. GigaScience, 2017, 6(8): 1–6. link1

[ 9 ] Jones S J M, Taylor G A, Chan S, et al. The genome of the Beluga whale (Delphinapterus leucas) [J]. Genes (Basel), 2017, 8(12): Pii:E378. link1

[10] Kang S, Ahn D H, Lee J H, et al, The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis [J]. GigaScience, 2017, 6(1): 1–9. link1

[11] Christensen K A, Rondeau E B, Minkley D R, et al. The Arctic charr (Salvelinus alpinus) genome and transcriptome assembly [J]. Plos One, 2018, 13(9): e0204076. link1

[12] Chen L B , Lu Y, Li W H, et al. The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes [J]. GigaScience, 2019, 8: 1–16. link1

[13] Liu C L, Huang X H. Transcriptome-wide analysis of DEADbox RNA helicase gene family in an Antarctic psychrophilic alga Chlamydomonas sp ICE-L [J]. Extremophiles, 2015, 19(5): 921–931. link1

[14] Thorne M A S, Kagoshima H, Clark M S, et al. Molecular analysis of the Cold Tolerant Antarctic Nematode, Panagrolaimus davidi [J]. Plos One, 2014, 9(8): e104526. link1

[15] Kim H S, Lee B Y, Han J, et al. De novo assembly and annotation of the Antarctic copepod (Tigriopus kingsejongensis) transcriptome [J]. Marine Genomics, 2016, 28: 37. link1

[16] Bilyk K T, Cheng C H C. Model of gene expression in extreme cold-reference transcriptome for the high-Antarctic cryopelagic notothenioid fish Pagothenia borchgrevinki [J]. BMC Genomics, 2013, 14: 634. link1

[17] Chen Z, Cheng C H C, Zhang J, et al. Transcriptomic and genomic evolution under constant cold in Antarctic notothenioid fish [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(35): 12944. link1

[18] Coppe A, Agostini C, Marino I A M, et al. Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function [J]. Genome Biology and Evolution, 2012, 5 (1): 45. link1

[19] Papetti C, Harms L, Windisch H S, et al. A first insight into the spleen transcriptome of the notothenioid fish Lepidonotothen nudifrons: Resource description and functional overview [J]. Marine Genomics, 2015, 24: 237. link1

[20] Cocca E, Ratnayake-lecamwasam M, Parker S K, et al. Genomic remnants of alpha-globin genes in the hemoglobinless antarctic icefishes [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92: 1817–1821. link1

[21] O’Brien K M, Mueller I A. The unique mitochondrial form and function of Antarctic channichthyid icefishes [J]. Integrative and Comparative Biology, 2010, 50: 993–1008. link1

[22] Xu Q, Cai C, Hu X, et al. Evolutionary suppression of erythropoiesis via the modulation of TGF-β signalling in an Antarctic icefish [J]. Molecular Ecology, 2015, 24: 4664–4678. link1

[23] Shin S C, Kim S J, Lee J K, et al. Transcriptomics and comparative analysis of three Antarctic notothenioid fishes [J]. Plos One, 2012, 7(8): e43762. link1

[24] Coppe A, Agostini C, Marino I A, et al. Genome evolution in the cold: Antarctic icefish muscle transcriptome reveals selective duplications increasing mitochondrial function [J]. Genome Biology and Evolution, 2013, 5: 45–60. link1

[25] Clark M S, Thorne M A S, Toullec J Y, et al. Antarctic krill 454 pyrosequencing reveals chaperone and stress transcriptome [J]. Plos One, 2011, 6(1): e15919. link1

[26] Meyer B, Martini P, Biscontin A, et al. Pyrosequencing and de novo assembly of Antarctic krill (Euphausia superba) transcriptome to study the adaptability of krill to climate-induced environmental changes [J]. Molecular Ecology Resource, 2015, 15: 6. link1

[27] Buckley B A, Somero G N. cDNA microarray analysis reveals the capacity of the cold-adapted Antarctic fish Trematomus bernacchii to alter gene expression in response to heat stress [J]. Polar Biology, 2009, 32 (3): 403. link1

[28] Huth T J, Place S P. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors [J]. BMC Genomics, 2016, 17: 127. link1

[29] Andersen Ø, Frantzen M, Rosland M, et al. Effects of crude oil exposure and elevated temperature on the liver transcriptome of polar cod (Boreogadus saida) [J]. Aquatic Toxicology, 2015, 165: 9. link1

[30] Kang S, Kim S, Park H. Transcriptome of the Antarctic amphipod Gondogeneia antarctica and its response to pollutant exposure [J]. Marine Genomics, 2015, 24: 253. link1

[31] Rhee J S R, Kim B M, Choi B S, et al. Transcriptome information of the Arctic green sea urchin and its use in environmental monitoring [J]. Polar Biology, 2014, 37 (8): 1133. link1

[32] De Pittà C, Bertolucci C, Mazzotta G M, et al. Systematic sequencing of mRNA from the Antarctic krill (Euphausia superba) and first tissue specific transcriptional signature [J]. BMC Genomics, 2008, 9: 45. link1

[33] Seear P J, Tarling G A, Burns G, et al. Differential gene expression during the moult cycle of Antarctic krill (Euphausia superba) [J]. BMC Genomics, 2010, 11: 582. link1

[34] Burns G, Thorndyke M C, Peck L S, et al. Transcriptome pyrosequencing of the Antarctic brittle star Ophionotus victoriae [J]. Marine Genomics, 2013, 9: 9. link1

[35] Gudbrandsson J, Ahi E P, Franzdottir S R, et al. The developmental transcriptome of contrasting Arctic charr (Salvelinus alpinus) morphs [J]. F1000Research, 2015, 4: 136. link1

[36] Magnanou E, Noirot C, Falcón J, et al. Sequencing and characterization of a multi-organ Arctic charr transcriptome: A toolbox for investigating polymorphism and seasonal life in a high Arctic fish [J]. Marine Genomics, 2016, 29: 45. link1

[37] Kelley J L, Aagaard J E, MacCoss M J, et al. Functional diversification and evolution of antifreeze proteins in the antarctic fish Lycodichthys dearborni [J]. Journal of Molecular Evolution, 2010, 71: 111–118. link1

[38] Nicodemus-Johnson J, Silic S, Ghigliotti L, et al. Assembly of the antifreeze glycoprotein/trypsinogen-like protease genomic locus in the Antarctic toothfish Dissostichus mawsoni (Norman) [J]. Genomics, 2011, 98(3): 194–201. link1

[39] Lee J K, Kim Y J, Park K S, et al. Molecular and comparative analyses of type IV antifreeze proteins (AFPIVs) from two Antarctic fishes, Pleuragramma antarcticum and Notothenia coriiceps [J]. Comparative Biochemistry and Physiology B-Biochemisty & Molecular Biology, 2011, 159(4): 197–205. link1

[40] Cao L X, Huang Q, Wu Z C, et al. Neofunctionalization of zona pellucida proteins enhances freeze-prevention in the eggs of Antarctic notothenioids [J]. Nature Communications, 2016, 7(1): 12987. link1

[41] Oreste U, Coscia M. Specific features of immunoglobulin VH genes of the Antarctic teleost Trematomus bernacchii [J]. Gene, 2002, 295(2): 199–204. link1

[42] Capriglione T, Odierna G, Caputo V, et al. Characterization of a Tc1-like transposon in the Antarctic ice-fish, Chionodraco hamatus [J]. Gene, 2002, 295(2): 193–198. link1

[43] Small D J, Moylan T, Vayda M E, et al. The myoglobin gene of the Antarctic icefish, Chaenocephalus aceratus, contains a duplicated TATAAAA sequence that interferes with transcription [J]. Journal of Experimental Biology, 2003, 206: 131–139. link1

[44] Kim M, Ahn I Y, Kim H J, et al. Molecular characterization and induction of heat shock protein 90 in the Antarctic bivalve Laternula elliptica [J]. Cell Stress & Chaperons, 2009, 14(4): 363–370. link1

[45] Place S P, Hofmann G E. Constitutive expression of a stress-inducible heat shock protein gene, HSP70, in phylogenetically distant Antarctic fish [J]. Polar Biology, 2005, 28(4): 261–267. link1

[46] Clark M S, Fraser K P P, Burns G, et al. The HSP70 heat shock response in the Antarctic fish Harpagifer antarcticus [J]. Polar Biology, 2008, 31(2): 171–180. link1

[47] Ahi E P, Steinhäuser S, Pálsson A, et al. Differential expression of the aryl hydrocarbon receptor pathway associates with craniofacial polymorphism in sympatric Arctic charr [J]. EvoDevo, 2015, 6: 27. link1

[48] Aluru N, Jorgensen E H, Maule A G, et al. PCB disruption of the hypothalamus-pituitary-interrenal axis involves brain glucocorticoid receptor downregulation in anadromous Arctic charr [J]. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2004, 287(4): R787–793. link1

[49] Miyazaki T, Iwami T. Molecular cloning of cDNA encoding red opsin gene in the retinas of five Antarctic notothenioid fishes [J]. Polar Biology, 2012, 35(5): 775–783. link1

[50] Borley K A, Sidell B D. Evolution of the myoglobin gene in Antarctic icefishes (Channichthyidae) [J]. Polar Biology, 2011, 34(5): 659–665. link1

Related Research