Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of Chinese Academy of Engineering >> 2022, Volume 24, Issue 6 doi: 10.15302/J-SSCAE-2022.06.005

Construction of Green-Hydrogen Supply System in China: Reflections and Suggestions

1. China Electric Power Planning & Engineering Institute Co., Ltd., Beijing 100120, China;

2. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China

Received:2022-10-10 Revised:2022-11-16 Available online:2022-11-28

Next Previous

Abstract

Under the guidance of the carbon neutrality goal, energy production and consumption modes of China are shifting to be green and low-carbon, and the hydrogen energy supply system will be reshaped based on green hydrogen. Green hydrogen will become an important component of China’s new energy supply and consumption system. Strengthening the construction of a green-hydrogen supply system is conducive to the transformation of China’s energy production and consumption modes. This study explored the significant values for constructing the green-hydrogen supply system and analyzed the challenges faced by the construction, including (1) spatial mismatch between green hydrogen supply and demand, (2) temporal mismatch between green hydrogen production and consumption, and (3) mismatch between the green-hydrogen supply system and existing systems, mechanisms, and standards. To support the construction of the green-hydrogen supply system, key research directions include key basic issues of hydrogen storage and transportation, hydrogen storage and transportation technologies and equipment, and safety testing technologies of hydrogen storage and transportation equipment, thereby realizing the high-quality development of hydrogen storage and transportation. Moreover, the study proposed the integrated development of hydrogen energy and electrical power to construct the green-hydrogen supply system of China. Hydrogen storage and transportation is a key link that connects water-electrolytic hydrogen production and hydrogen consumption and is crucial for adjusting the spatial and temporal mismatch of green hydrogen supply and demand and for realizing flexible supply of green hydrogen. Therefore, we suggest that China should focus on top-level design and overall planning, improve infrastructures to address the spatial and temporal mismatches, conduct pilot demonstration to drive technological innovation, and improve the systems and mechanisms to optimize the development environment.

Image

图1

References

[1]  凌文 , 李全生 , 张凯‍ ‍. 我国氢能产业发展战略研究 [J ]‍. 中国工程科学, 2022 , 24 3:80‒88‍.

[2]  Zhang X Q‍. The development trend of and suggestions for China´s hydrogen energy industry [J]‍. Engineering, 2021, 7(6): 719‒721‍.

[3]  B‍ Michael J. Thoughts on the prospects of renewable hydrogen engineering [J]‍. Engineering, 2020, 6(12): 1343‒1345‍.

[4]  国家能源局‍ . 氢能产业发展中长期规划 2021 — 2035 年 [EBOL]‍. 2022-03-23 [ 2022-08-15 ]‍. http:zfxxgk‍.nea‍.gov‍.cn2022-0323c_1310525630‍.htm‍ .

[5]  张从容‍ . 碳中和时代绿氢发展前景与挑战 [J]‍. 石油石化绿色低碳 , 2022 , 7 1 : 6 ‒ 10 ‍.

[6]  管煦‍ . 氢能: 双碳目标下的"终极能源" [J]‍. 中国工业和信息化 , 2022 5 : 18 ‒ 22 ‍.

[7]  焦红霞 , 吴昊‍ . 纳入新型储能 氢电耦合将点亮双碳之路 [N]‍. 中国改革报 , 2021-08-03 05‍.

[8]  李惠钰‍ . " 氢电耦合"构建现代能源体系 [N]‍. 中国科学报 , 2021-03-22 03‍.

[9]  周倜然‍ . 氢电耦合的跨界猜想 [N]‍. 中国电力报 , 2022-07-21 07‍.

[10]  韩逸飞‍ . 电网企业瞄准氢电耦合新赛道 [N]‍. 中国能源报 , 2022-04-25 21‍.

[11]  杨梓‍ . 氢电耦合快速升温 [N]‍. 中国能源报 , 2022-06-13 10‍.

[12]  陈宇 , 赵彦旻 , 曹吉领 , 等‍ . 氢电耦合在高弹性电网中的应用场景及投资收益分析 [J]‍. 能源工程 , 2022 , 42 3 : 88 ‒ 92 ‍.

[13]  Li C L, Wu A Q, Xi C Q, al et‍. High reversible cycling performance of carbon dioxide electrolysis by flat-tube solid oxide cell [J]‍. Applied Energy, 2022, 314: 1‒12‍.

[14]  Gao C, Lin J J, Zeng J F, al et‍. Wind-photovoltaic co-generation prediction and energy scheduling of low-carbon complex regional integrated energy system with hydrogen industry chain based on copula-MILP [J]‍. Applied Energy, 2022, 328: 1‒12‍.

[15]  Wu A Q, Li C L, Han B B, al et‍. Effect of air addition to the air electrode on the stability and efficiency of carbon dioxide electrolysis by solid oxide cells [J]‍. International Journal of Hydrogen Energy, 2022, 47(58): 24268‒24278‍.

[16]  Yuan J X, Cheng X D, Lei C J, al et‍. Bimetallic oxyhydroxide as a high-performance water oxidation electrocatalyst under industry-relevant conditions [J]‍. Engineering, 2021, 7(9): 1306‒1312‍.

[17]  徐飞 , 李晓霞 , 程丽敏‍ . 氢电综合利用价值及模式分析 [J]‍. 电器工业 , 2022 7 : 73 ‒ 77 ‍.

[18]  中国氢能源及燃料电池产业创新战略联盟‍ . 中国氢能源及燃料电池产业发展报告 [R]‍. 北京 : 人民日报出版社 , 2020 ‍.

[19]  张智 , 赵苑瑾 , 蔡楠‍ . 中国氢能产业技术发展现状及未来展望 [J]‍. 天然气工业 , 2022 , 42 5 : 156 ‒ 165 ‍.

[20]  刘坚‍ . 我国绿氢规模化发展面临的挑战与建议 [J]‍. 中国电力企业管理 , 2022 16 : 53 ‒ 55 ‍.

[21]  罗佐县 , 曹勇‍ . 氢能产业发展前景及其在中国的发展路径研究 [J]‍. 中外能源 , 2020 , 25 2 : 9 ‒ 15 ‍.

[22]  韩红梅 , 杨铮 , 王敏 , 等‍ . 我国氢气生产和利用现状及展望 [J]‍. 中国煤炭 , 2021 , 47 5 : 59 ‒ 63 ‍.

[23]  田倩 , 王卓然 , 刘涛 , 等‍ . 绿氢的本质和意义 [J]‍. 化工设计通讯 , 2022 , 48 4 : 178 ‒ 180 ‍.

[24]  徐东 , 刘岩 , 李志勇 , 等‍ . 氢能开发利用经济性研究综述 [J]‍. 油气与新能源 , 2021 , 33 2 : 50 ‒ 56 ‍.

[25]  李建林 , 李光辉 , 马速良 , 等‍ . 碳中和目标下制氢关键技术进展及发展前景综述 [J]‍. 热力发电 , 2021 , 50 6 : 1 ‒ 8 ‍.

[26]  俞红梅 , 邵志刚 , 侯明 , 等‍ . 电解水制氢技术研究进展与发展建议 [J]‍. 中国工程科学 , 2021 , 23 2 : 146 ‒ 152 ‍.

[27]  殷伊琳‍ . 我国氢能产业发展现状及展望 [J]‍. 化学工业与工程 , 2021 , 38 4 : 78 ‒ 83 ‍.

[28]  刘玮 , 万燕鸣 , 熊亚林 , 等‍ . " 双碳"目标下我国低碳清洁氢能进展与展望 [J]‍. 储能科学与技术 , 2022 , 11 2 : 635 ‒ 642 ‍.

[29]  刘金朋 , 侯焘‍ . 氢储能技术及其电力行业应用研究综述及展望 [J]‍. 电力与能源 , 2020 , 41 2 : 230 ‒ 233 ‍.

[30]  许传博 , 刘建国‍ . 氢储能在我国新型电力系统中的应用价值、挑战及展望 [J]‍. 中国工程科学 , 2022 , 24 3 : 89 ‒ 99 ‍.

[31]  中国石油和化学工业联合会‍ . 现代煤化工"十四五"发展指南 [R]‍. 北京 : 中国石油和化学工业联合会 , 2021 ‍.

[32]  中华人民共和国国家发展和改革委员会‍ . 石化产业规划布局方案修订版 [EBOL]‍. 2015-05-18 [ 2022-08-15 ]‍. https:www‍.ndrc‍.gov‍.cnfgsjtjsjcyfzzzyfz201505t20150529_1149819‍.html?code=state=123‍ .

[33]  郭秀盈 , 李先明 , 许壮 , 等‍ . 可再生能源电解制氢成本分析 [J]‍. 储能科学与技术 , 2020 , 9 3 : 688 ‒ 695 ‍.

[34]  文凡 , 陈彦佐 , 车佳辰 , 等‍ . " 双碳"背景下区域电力‒氢能系统协同优化规划 [J]‍. 全球能源互联网 , 2022 4 : 318 ‒ 330 ‍.

[35]  李鹏‍ . 氢标领航 安储致远——专访中国工程院院士郑津洋 [J]‍. 太阳能 , 2022 5 : 7 ‒ 13 ‍.

[36]  曹军文 , 覃祥富 , 耿嘎 , 等‍ . 氢气储运技术的发展现状与展望 [J]‍. 石油学报石油加工 , 2021 , 37 6 : 1461 ‒ 1478 ‍.

[37]  丁镠 , 唐涛 , 王耀萱 , 等‍ . 氢储运技术研究进展与发展趋势 [J]‍. 天然气化工‒C1化学与化工 , 2022 , 47 2 : 35 ‒ 40 ‍.

[38]  郑津洋 , 胡军 , 韩武林 , 等‍ . 中国氢能承压设备风险分析和对策的几点思考 [J]‍. 压力容器 , 2020 , 37 6 : 39 ‒ 47 ‍.

[39]  陈林 , 董绍华 , 李凤 , 等‍ . 氢环境下压力容器及管道材料相容性研究进展 [J]‍. 力学与实践 , 2022 , 44 3 : 503 ‒ 518 ‍.

[40]  杨静 , 王晓霖 , 李遵照 , 等‍ . 氢气长距离管输技术现状与探讨 [J]‍. 压力容器 , 2021 , 38 2 : 80 ‒ 86 ‍.

Related Research