Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 3 doi: 10.15302/J-SSCAE-2023.03.009

Research Status and Prospect of Development Characteristics and Monitoring Techniques of Submarine Geological Hazards

1. College of Geological Engineering and Surveying, Chang’an University, Xi’an 710054, China;

2. Academy of Yellow River Sciences of Shaanxi Province, Xi’an 710054, China;

3. Shandong Provincial Key Laboratory of Marine Environment and Engineering (Ocean University of China), Qingdao 266100, Shandong,  China;

4. Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, Shandong, China

Funding project:Chinese Academy of Engineering project “Strategic Consultation for Risk Response of Submarine Geological Hazards in the Qiongdongnan Basin” (21-HN-ZD-02) Received: 2023-04-05 Revised: 2023-05-16 Available online: 2023-06-13

Next Previous

Abstract

Against the background of strengthening the marine industry, China’s marine resource development activities have gradually extended to the deep sea. However, due to harsh geological conditions, major submarine geological hazards pose constraints on marine resource  evelopment and engineering. It is necessary to comprehensively understand the typical characteristics and causallaws of submarine geological hazards and summarize the monitoring techniques and methods for typical submarine geological hazards. This study provides an overview of the research history of submarine geological hazards and their monitoring. It summarizes the common types and characteristics of submarine geological hazards, and reviews the research on the mechanisms of submarine geological hazard evolution as well as the progress in monitoring techniques and networks for submarine geological hazards. The study suggests that it is important to improve the evaluation theory and methods of submarine geological hazards in circumcontinental shelf basins, strengthen the study of disaster mechanisms and prediction for these hazards, and conduct research on detection and monitoring methods and precursory identification of submarine geological hazards to enhance our understanding of key scientific issues. Furthermore, the study emphasizes the need to establish a  comprehensive database of submarine geological hazards in the circumcontinental shelf basins, create a detailed information repository of submarine resource distribution and engineering facilities in the South China Sea’s circumcontinental shelf area, develop visualization and simulation techniques for the dynamic evolution process of submarine geological hazards, and construct a multi-level and multi-hazard cooperative monitoring system and early warning network for submarine geological hazards, aiming to overcome key technological bottlenecks. 

Figures

图1

图2

图3

图4

图5

References

[ 1 ] 刘朝全 , 姜学峰 , 吴谋远‍‍ . 2021年国内外油气行业发展报告 [M]‍. 北京 : 石油工业出版社 , 2022 ‍.
Liu C Q , Jiang X F , Wu M Y‍ . Development report of oil and gas industry at home and abroad in 2021 [M]‍. Beijing : Petroleum Industry Press , 2022 ‍.

[ 2 ] Sahal A, Lemahieu A‍. The 1979 nice airport tsunami: Mapping of the flood in Antibes [J]‍. Natural Hazards, 2011, 56(3): 833‒840‍.

[ 3 ] Tripsanas E K, Piper D J W, C‍ Campbell D. Evolution and depositional structure of earthquake-induced mass movements and gravity flows: Southwest Orphan Basin, Labrador Sea [J]‍. Marine and Petroleum Geology, 2008, 25(7): 645‒662‍.

[ 4 ] Cheng C, Jiang T, Kuang Z G, al et‍. Seismic characteristics and distributions of quaternary mass transport deposits in the Qiongdongnan Basin, northern South China Sea [J]‍. Marine and Petroleum Geology, 2021, 129: 105118‍.

[ 5 ] Grilli S T, Zhang C, Kirby J T, al et‍. Modeling of the Dec‍. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: Comparison with observed tsunami impact [J]‍. Marine Geology, 2021, 440: 106566‍.

[ 6 ] 周杨锐 , 吴秋云 , 董明明 , 等‍ . 深水工程勘察技术研究现状与展望 [J]‍. 中国海上油气 , 2017 , 29 6 : 158 ‒ 166 ‍.
Zhou Y R , Wu Q Y , Dong M M , al e t ‍. Current status and development outlook of deep water geotechnical investigation and survey technology [J]‍. China Offshore Oil and Gas , 2017 , 29 6 : 158‒ 166‍.

[ 7 ] 贾永刚 , 陈天 , 李培英 , 等‍ . 海洋地质灾害原位监测技术研究进展 [J]‍. 中国地质灾害与防治学报 , 2022 , 33 3 : 1 ‒ 14 ‍.
Jia Y G , Chen T , Li P Y , al e t ‍. Research progress on the in-situ monitoring technology of marine geohazards [J]‍. The Chinese Journal of Geological Hazard and Control , 2022 , 33 3 : 1 ‒ 14 ‍.

[ 8 ] 李海东 , 许江 , 郑江龙 , 等‍ . 广西近海灾害地质因素及声学反射特征 [J]‍. 应用海洋学学报 , 2016 , 35 2 : 275 ‒ 283 ‍.
Li H D , Xu J , Zheng J L , al e t ‍. Neritic hazardous geology and its characteristic acoustic reflection in offshore of Guangxi [J]‍. Journal of Applied Oceanography , 2016 , 35 2 : 275 ‒ 283 ‍.

[ 9 ] 俞学礼‍ . 海洋石油开发百年回顾 [J]‍. 科学 , 1999 , 51 4 : 30 ‒ 33 ‍.
L‍ Yuu X . Review of 100 years of offshore oil development [J]‍. Science , 1999 , 51 4 : 30 ‒ 33 ‍.

[10] 钱寿易 , 杜金声 , 楼志刚 , 等‍ . 海洋土力学现状及发展 [J]‍. 力学进展 , 1980 4 : 1 ‒ 14 ‍.
Qian S Y , Du J S , Lou Z G , al e t ‍. Current status and development of marine soil mechanics [J]‍. Advances in Mechanics , 1980 4 : 1 ‒ 14 ‍.

[11] 潘继平 , 张大伟 , 岳来群 , 等‍ . 全球海洋油气勘探开发状况与发展趋势 [J]‍. 中国矿业 , 2006 11 : 1 ‒ 4 ‍.
Pan J P , Zhang D W , Yue L Q , al e t ‍. Status quo of global offshore oil and gas exploration and development and its trends [J]‍. China Mining Magazine , 2006 11 : 1 ‒ 4 ‍.

[12] 郭兴森‍ . 海底地震滑坡易发性与滑坡—管线相互作用研究 [D]‍. 大连 : 大连理工大学 博士学位论文 , 2021 ‍.
Guo X S‍ . Study on the susceptibility of submarine seismic landslide and landslide-pipeline interaction [D]‍. Dalian : Dalian University of Technology Doctoral dissertation , 2021 ‍.

[13] 叶银灿‍ . 海洋灾害地质学发展的历史回顾及前景展望 [J]‍. 海洋学研究 , 2011 , 29 4 : 1 ‒ 7 ‍.
Ye Y C‍ . Review of the development of marine hazard geology and its future prospect [J]‍. Journal of Marine Science , 2011 , 29 4 : 1 ‒ 7 ‍.

[14] 赵广涛 , 谭肖杰 , 李德平‍ . 海洋地质灾害研究进展 [J]‍. 海洋湖沼通报 , 2011 1 : 159 ‒ 164 ‍.
Zhao G T , Tan X J , Li D P‍ . Research and advances in marine geo-hazards [J]‍. Transactions of Oceanology and Limnology , 2011 1 : 159 ‒ 164 ‍.

[15] 刘守全 , 张明书‍ . 海洋地质灾害研究与减灾 [J]‍. 中国地质灾害与防治学报 , 1998 S1 : 163 ‒ 167 ‍.
Liu S Q , Zhang M S‍ . Research and reduction of China marine geologic hazards [J]. The Chinese Journal of Geological Hazard and Control , 1998 S1 : 163 ‒ 167 ‍.

[16] 孙启良 , 解习农 , 吴时国‍ . 南海北部海底滑坡的特征、灾害评估和研究展望 [J]‍. 地学前缘 , 2021 , 28 2 : 258 ‒ 270 ‍.
Sun Q L , Xie X N , Wu S G‍ . Submarine landslides in the northern South China Sea: Characteristics, geohazard evaluation and perspectives [J]‍. Earth Science Frontiers , 2021 , 28 2 : 258 ‒ 270 ‍.

[17] Zhang W, Liang J Q, Su P B, al et‍. Distribution and characteristics of mud diapirs, gas chimneys, and bottom simulating reflectors associated with hydrocarbon migration and gas hydrate accumulation in the Qiongdongnan Basin, northern slope of the South China Sea [J]‍. Geological Journal, 2019, 54(6): 3556‒3573‍.

[18] 王俊勤 , 张广旭 , 陈端新 , 等‍ . 琼东南盆地陵水研究区海底地质灾害类型、分布和成因机制 [J]‍. 海洋地质与第四纪地质 , 2019 , 39 4 : 87 ‒ 95 ‍.
Wang J Q , Zhang G X , Chen D X , al e t ‍. Geological hazards in Lingshui region of Qiongdongnan Basin: Type, distribution and origin [J]‍. Marine Geology Quaternary Geology , 2019 , 39 4 : 87 ‒ 95 ‍.

[19] 年廷凯 , 沈月强 , 郑德凤 , 等‍ . 海底滑坡链式灾害研究进展 [J]‍. 工程地质学报 , 2021 , 29 6 : 1657 ‒ 1675 ‍.
Nian T K , Shen Y Q , Zheng D F , al e t ‍. Research advance on the chain disasters of submarine landslides [J]‍. Journal of Engineering Geology , 2021 , 29 6 : 1657 ‒ 1675 ‍.

[20] 贾永刚 , 王振豪 , 刘晓磊 , 等‍ . 海底滑坡现场调查及原位观测方法研究进展 [J]‍. 中国海洋大学学报 ‍自然科学版 , 2017 , 47 10 : 61 ‒ 72 ‍.
Jia Y G , Wang Z H , Liu X L , al e t ‍. The research progress of field investigation and in-situ observation methods for submarine landslides [J]‍. Periodical of Ocean University of China , 2017 , 47 10 : 61 ‒ 72 ‍.

[21] Ripmeester J A, Tse J S, Ratcliffe C I, al et‍. A new clathrate hydrate structure [J]‍. Nature, 1987, 325(6100): 135‒136‍.

[22] 淳明浩 , 刘振纹 , 杨肖迪 , 等‍ . 深水三浅地质灾害的监测与预防技术研究 [C]‍. 舟山 : 第十八届中国海洋‍ 岸工程学术讨论会 , 2017 ‍.
Chun M H , Liu Z W , Yang X D , al e t ‍. Research on monitoring and prevention technology of deep-water three-shallow geological disasters [C]‍. Zhoushan : The 18th China Marine Offshore Engineering Symposium‍ , 2017 ‍.

[23] Phrampus B J, J‍ Hornbach M. Recent changes to the gulf stream causing widespread gas hydrate destabilization [J]‍. Nature, 2012, 490(7421): 527‒530‍.

[24] 马云 , 李三忠 , 梁金强 , 等‍ . 南海北部琼东南盆地海底滑坡特征及其成因机制 [J]‍. 吉林大学学报 地球科学版 , 2012 , 42 S3 : 196 ‒ 205 ‍.
Ma Y , Li S Z , Liang J Q , al e t ‍. Characteristics and mechanism of submarine landslides in the Qiongdongnan Basin, northern South China Sea [J]‍. Journal of Jilin University Earth Science Edition , 2012 , 42 S3 : 196 ‒ 205 ‍.

[25] 彭晓彤 , 周怀阳 , 陈光谦 , 等‍ . 论天然气水合物与海底地质灾害、气象灾害和生物灾害的关系 [J]‍. 自然灾害学报 , 2002 4 : 18 ‒ 22 ‍.
Peng X T , Zhou H Y , Chen G Q , al e t ‍. Environmental disaster of gas hydrate: Its relationship with submarine geology hazard, climate hazard and biology hazard [J]‍. Journal of Natural Disasters , 2002 4 : 18 ‒ 22 ‍.

[26] 朱超祁 , 张民生 , 刘晓磊 , 等‍ . 海底天然气水合物开采导致的地质灾害及其监测技术 [J]‍. 灾害学 , 2017 , 32 3 : 51 ‒ 56 ‍.
Zhu C Q , Zhang M S , Liu X L , al e t ‍. Gas hydrate: Production geohazards and monitoring [J]‍. Journal of Catastrophology , 2017 , 32 3 : 51 ‒ 56 ‍.

[27] Vanneste M, Sultan N, Garziglia S, al et‍. Seafloor instabilities and sediment deformation processes: The need for integrated, multi-disciplinary investigations [J]‍. Marine Geology, 2014, 352: 183‒214‍.

[28] 陈子归 , 姜涛 , 匡增桂 , 等‍ . 琼东南盆地天然气水合物与浅层气共生体系成藏特征 [J]‍. 地球科学 , 2022 , 47 5 : 1619 ‒ 1634 ‍.
Chen Z G , Jiang T , Kuang Z G , al e t ‍. Accumulation characteristics of gas hydrate-shallow gas symbiotic system in Qiongdongnan Basin [J]‍. Earth Science , 2022 , 47 5 : 1619 ‒ 1634 ‍.

[29] 朱超祁 , 贾永刚 , 刘晓磊 , 等‍ . 海底滑坡分类及成因机制研究进展 [J]‍. 海洋地质与第四纪地质 , 2015 , 35 6 : 153 ‒ 163 ‍.
Zhu C Q , Jia Y G , Liu X L , al e t ‍. Classification and genetic mechanism of submarine landslide: A review [J]‍. Marine Geology Quaternary Geology , 2015 , 35 6 : 153 ‒ 163 ‍.

[30] 谢金有 , 祝幼华 , 李绪深 , 等‍ . 南海北部大陆架莺琼盆地新生代海平面变化 [J]‍. 海相油气地质 , 2012 , 17 1 : 49 ‒ 58 ‍.
Xie J Y , Zhu Y H , Li X S , al e t ‍. The genozoic sea-level changes in Yinggehai‍‒Qiongdongnan Basin, northern South China Sea [J]‍. Marine Origin Petroleum Geology , 2012 , 17 1 : 49 ‒ 58 ‍.

[31] Kopp H, Weinzierl W, Becel A, al et‍. Deep structure of the central Lesser Antilles Island Arc: Relevance for the formation of continental crust [J]‍. Earth and Planetary Science Letters, 2011, 304(1): 121‒134‍.

[32] 吴志强 , 张训华 , 赵维娜 , 等‍ . 海底节点 OBN地震勘探: 进展与成果 [J]‍. 地球物理学进展 , 2021 , 36 1 : 412 ‒ 424 ‍.
Wu Z Q , Zhang X H , Zhao W N , al e t ‍. Ocean bottom station nodes OBN : Progress and achievement [J]‍. Progress in Geophysics , 2021 , 36 1 : 412 ‒ 424 ‍.

[33] Hello Y, Ogé A, Sukhovich A, al et‍. Modern mermaids: New floats image the deep Earth [J]‍. Eos, 2011, 92(40): 337‒338‍.

[34] Sukhovich A, Bonnieux S, Hello Y, al et‍. Seismic monitoring in the oceans by autonomous floats [J]‍. Nature Communications, 2015, 6(1): 8027‍.

[35] Marra G, Clivati C, Luckett R, al et‍. Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables [J]‍. Science, 2018, 361(6401): 486‒490‍.

[36] 陈天 , 贾永刚 , 刘涛 , 等‍ . 海底沉积物孔隙压力原位长期观测技术回顾和展望 [J]‍. 地学前缘 , 2022 , 29 5 : 229 ‒ 245 ‍.
Chen T , Jia Y G , Liu T , al e t ‍. Long-term in situ observation technology of pore pressure in marine sediments: Review of technology development and future outlook [J]‍. Earth Science Frontiers , 2022 , 29 5 : 229 ‒ 245 ‍.

[37] PrindleR W, A‍ Lopez A. Pore pressures in marine sediments—1981 test of the geotechnically instrumented seafloor probe (GISP) [C]‍. Houston: Offshore Technology Conference, 1983‍.

[38] Schultheiss P J, McPhail S D, Packwood A R, al et‍. An instrument to measure differential pore pressures in deep ocean sediments: Pop-up-pore pressure instrument (PUPPI) [R]‍. Wormley: Institute of Oceanographic Sciences, 1985‍.

[39] Stegmann S, Sultan N, Garziglia S, al et‍. A long-term monitoring array for landslide precursors: A case study at the ligurian slope (Western Mediterranean Sea) [C]‍. Houston: Offshore Technology Conference, 2012‍.

[40] Marine geohazards: Safeguarding society and the blue economy from a hidden threat [EB/OL]‍. (2021-11-15)[2023-04-15]‍. https: //www‍.marineboard‍.eu/sites/marineboard‍.eu/files/public/publication/EMB_PP26_Marine_Geo_Hazards_v5_web‍.pdf‍. link1

[41] 杜星‍ . 黄河口海底粉土波致孔压精细观测及液化评判方法 [D]‍. 青岛 : 自然资源部第一海洋研究所 硕士学位论文 , 2016 ‍.
Du X‍ . Fine observation of wave-induced pore water pressure and liquefaction evaluation method of seabed silt in Yellow River Estuary [D]‍. Qingdao : First Institute of Oceanography, Ministry of Natural Resources Master´s thesis , 2016 ‍.

[42] Liu T, Li S P, Kou H L, al et‍. Excess pore pressure observation in marine sediment based on fiber bragg grating pressure sensor [J]‍. Marine Georesources & Geotechnology, 2019, 37(7): 775‒782‍.

[43] Stenvold T, Eiken O, Zumberge M A, al et‍. High-precision relative depth and subsidence mapping from seafloor water-pressure measurements [J]‍. SPE Journal, 2006, 11(3): 380‒389‍.

[44] Prior D B, Suhayda J N, Lu N Z, al et‍. Storm wave reactivation of a submarine landslide [J]‍. Nature, 1989, 341(6237): 47‒50.

[45] Fabian M, Villinger H‍. Long-term tilt and acceleration data from the logatchev hydrothermal vent field, Mid-Atlantic Ridge, measured by the Bremen ocean bottom tiltmeter [J]‍. Geochemistry, Geophysics, Geosystems, 2008, 9(7): Q07016‍.

[46] Blum J A, Chadwell C D, Driscoll N, al et‍. Assessing slope stability in the Santa Barbara Basin, California, using seafloor geodesy and CHIRP seismic data [J]‍. Geophysical Research Letters, 2010, 37(13): L13308‍.

[47] A‍ Zumberge M. Precise optical path length measurement through an optical fiber: Application to seafloor strain monitoring [J]‍. Ocean Engineering, 1997, 24(6): 531‒542‍.

[48] L‍ Morton J. Sea-floor horizontal deformation measurements using dual-frequency intellegent transponders [C]‍. Dordrecht: Proceedings International Symposium on Marine Positioning, 1994‍.

[49] Petersen F, Kopp H, Lange D, al et‍. Measuring tectonic seafloor deformation and strain-build up with acoustic direct-path ranging [J]‍. Journal of Geodynamics, 2019, 124: 14‒24‍.

[50] Wang Z H, Sun Y F, Jia Y G, al et‍. Wave-induced seafloor instabilities in the subaqueous Yellow River Delta—Initiation and process of sediment failure [J]‍. Landslides, 2020, 17(8): 1849‒1862‍.

[51] Sternberg R W, S‍ Creager J. An instrument system to measure boundary-layer conditions at the sea floor [J]‍. Marine Geology, 1965, 3(6): 475‒482‍.

[52] Cacchione D A, E‍ Drake D. A new instrument system to investigate sediment dynamics on continental shelves [J]‍. Marine Geology, 1979, 30(3‒4): 299‒312‍.

[53] Wright L D, Boon J D, Green M O, al et‍. Response of the mid shoreface of the southern mid-Atlantic Bight to a "northeaster" [J]‍. Geo-Marine Letters, 1986, 6(3): 153‒160‍.

[54] 马小川 , 阎军 , 范奉鑫 , 等‍ . 北部湾南部海域近底悬沙输运及地貌演变 [J]‍. 海洋学报 , 2012 , 34 4 : 109 ‒ 120 ‍.
Ma X C , Yan J , Fan F X , al e t ‍. Redform dynamics and suspended sediment transport near sea bottom in the south of Beibu Gulf [J]‍. Acta Oceanologica Sinica , 2012 , 34 4 : 109 ‒ 120 ‍.

[55] 赵广涛 , 于新生 , 李欣 , 等‍ . Benvir: 一个深海海底边界层原位监测装置 [J]‍. 高技术通讯 , 2015 , 25 1 : 54 ‒ 60 ‍.
Zhao G T , Yu X S , Li X , al e t ‍. Benvir: A in situ deep-sea observation system for benthic enviromental monitoring [J]‍. High Technology Letters , 2015 , 25 1 : 54 ‒ 60 ‍.

[56] 季春生 , 贾永刚 , 朱俊江 , 等‍ . 深海海底边界层原位观测系统研发与应用 [J]‍. 地学前缘 , 2022 , 29 5 : 265 ‒ 274 ‍.
Ji C S , Jia Y G , Zhu J J , al e t ‍. R D and appliciation of the abyssal bottom boundary layer observation system ABBLOS [J]‍. Earth Science Frontiers , 2022 , 29 5 : 265 ‒ 274 ‍.

[57] Cacchione D A, Sternberg R W, S‍ Ogston A. Bottom instrumented tripods: History, applications, and impacts [J]‍. Continental Shelf Research, 2006, 26(17‒18): 2319‒2334‍.

[58] Solomon E A, Becker K, Kopf A J, al et‍. Listening down the pipe [J]‍. Oceanography, 2019, 32(1): 98‒101‍.

[59] 汪品先‍ . 从海底观察地球——地球系统的第三个观测平台 [J]‍. 自然杂志 , 2007 3 : 125 ‒ 130 ‍.
Wang P X‍ . Seafloor observation: The third platform for the Earth observation [J]‍. Chinese Journal of Nature , 2007 3 : 125 ‒ 130 ‍.

[60] 孙志文 , 贾永刚 , 权永峥 , 等‍ . 复杂深海工程地质原位长期监测系统研发与应用 [J]‍. 地学前缘 , 2022 , 29 5 : 216 ‒ 228 ‍.
Sun Z W , Jia Y G , Quan Y Z , al e t ‍. Development and application of long-term in situ monitoring system for complex deep-sea engineering geology [J]‍. Earth Science Frontiers , 2022 , 29 5 : 216 ‒ 228 .

[61] 李风华 , 路艳国 , 王海斌 , 等‍ . 海底观测网的研究进展与发展趋势 [J]‍. 中国科学院院刊 , 2019 , 34 3 : 321 ‒ 330 ‍.
Li F H , Lu Y G , Wang H B , al e t ‍. Research progress and development trend of seafloor observation network [J]‍. Bulletin of the Chinese Academy of Sciences , 2019 , 34 3 : 321 ‒ 330 ‍‍.

[62] 李三忠 , 赵淑娟 , 刘鑫 , 等‍ . 洋 – 陆转换与耦合过程 [J]‍. 中国海洋大学学报自然科学版 , 2014 , 44 10 : 113 ‒ 133 ‍.
Li S Z , Zhao S J , Liu X , al e t ‍. Processes of ocean-continent transition and coupling [J]‍. Periodical of Ocean University of China , 2014 , 44 10 : 113 ‒ 133 ‍.

Related Research