Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2023, Volume 25, Issue 3 doi: 10.15302/J-SSCAE-2023.07.018

Technological Trend and Suggestions for Cultured Meat Industry

Science Center for Future Foods, Jiangnan University, Wuxi 214122, Jiangsu, China

Funding project:Chinese Academy of Engineering project “Strategic Research on the Development of Technology and Equipment for the Cultured Meat Industry” (2022-XY-22) Received: 2023-01-17 Revised: 2023-03-01 Available online: 2023-06-15

Next Previous

Abstract

Cultured meat is a strategic emerging industry that integrates advanced biotechnology and food technology and it may lead to industrial restructuring and development pattern transformation of the agricultural field. As the cultured meat technology develops toward commercialization, it is of great significance to analyzing the technological trend of the industry. This study first summarizes the industrial status and research progress of the core raw materials and reagents for cultured meat production, including well-bred animals, seed cells, culture media, and scaffolding materials. Then the manufacturing technology bottlenecks and the industrial competition pattern of main equipment (e.g., biosafety cabinets and bioreactors) for cultured meat production are analyzed. Furthermore, the key technology system and development trend for the large-scale production of cultured meat are reviewed, including the establishment of seed cell banks, bioprocess of large-scale cell culture, development of low-cost culture medium, and food processing technology. In view of the weakness in the cultured meat industry foundation in China, the following suggestions are proposed: (1) accelerating the localization of reagents and equipment to improve the industrial chain; (2) improving the cultured meat technical system by strengthening the international layout of intellectual property rights, (3) optimizing discipline classification while promoting education through school-enterprise integration; (4) improving risk assessment and formulating group standards, and (5) popularizing scientific knowledge to enhance the public acceptance of cultured meat.

Figures

图1

图2

图3

References

[ 1 ] Eibl R, Senn Y, Gubser G, al et‍. Cellular agriculture: Opportunities and challenges [J]‍. Annual Reviews Food Science and Technology, 2021, 12(1): 51‒73‍.

[ 2 ] 关欣 , 周景文 , 堵国成 , 等‍‍ . 培育肉生产技术发展研究 [J]‍. 中国工程科学 , 2021 , 23 6 : 178 ‒ 186 ‍.
Guan X , Zhou J W , Du G C , al e t ‍. Development of cultured meat technology in China [J]‍. Strategic Study of CAE , 2021 , 23 6 : 178 ‒ 186 ‍.

[ 3 ] Guan X, Lei Q Z, Yan Q Y, al et‍. Trends and ideas in technology, regulation and public acceptance of cultured meat [J]‍. Future Foods, 2021, 3: 100032‍.

[ 4 ] Rubio N R, Xiang N, L‍ Kaplan D. Plant-based and cell-based approaches to meat production [J]‍. Nature Communications, 2020, 11: 6276‍.

[ 5 ] Chen L, Guttieres D, Koenigsberg A, al et‍. Large-scale cultured meat production: Trends, challenges and promising biomanufacturing technologies [J]‍. Biomaterials, 2022, 280: 121274‍.

[ 6 ] Wildtype to serve up sushi-grade alt-salmon cultivated from fish cells by year end [EB/OL]‍. (2021-08-02)[2022-12-15]‍. https://www‍.foodingredientsfirst‍.com/news/wildtype-to-serve-up-sushi-grade-alt-salmon-cultivated-from-fish-cells-by-year-end‍.html‍. link1

[ 7 ] meat Making, making history [EB/OL]‍. (2021-11-17)[2022-12-15]‍. https://upsidefoods‍.com/making-meat-making-history/‍. link1

[ 8 ] 韩信嵘‍ . 基于转录组测序分析中国西门塔尔牛和安格斯牛脂肪沉积相关基因的差异表达 [D]‍. 通辽 : 内蒙古民族大学硕士学位论文 , 2020 ‍.
Han X R‍ . Analysis of differentially expressed genes related to fat deposition in simmental and angus based on transcriptome sequencing [D]‍. Tongliao : Inner Mongolia Minzu UniversityMaster´s thesis , 2020 ‍.

[ 9 ] Zhi M L, Zhang J Y, Tang Q Z, al et‍. Generation and characterization of stable pig pregastrulation epiblast stem cell lines [J]‍. Cell Research, 2022, 32(4): 383‒400‍.

[10] Fish K D, Rubio N R, Stout A J, al et‍. Prospects and challenges for cell-cultured fat as a novel food ingredient [J]‍. Trends in Food Science & Technology, 2020, 98: 53‒67‍.

[11] Li M, Wang D D, Fang J H‍, al et‍. An efficient and economical way to obtain porcine muscle stem cells for cultured meat production [J]‍. Food Reserch International, 2022, 162: 112206‍.

[12] Ding S J, Wang F, Liu Y, al et‍. Characterization and isolation of highly purified porcine satellite cells [J]‍. Cell Death Discovery, 2017, 3: 17003‍.

[13] Fang J H, Li M, Zhang G Q, al et‍. Vitamin C enhances the ex vivo proliferation of porcine muscle stem cells for cultured meat production [J]‍. Food & Function, 2022, 13(9): 5089‒5101‍.

[14] Lei Q Z, Li M, Du G C, al et‍. An effective cytokine combination for ex vivo expansion of porcine muscle stem cells [J]‍. Food Bioscience, 2022, 46: 101571‍.

[15] Guo Y, Ding S J, Ding X, al et‍. Effects of selected flavonoids oncellproliferation and differentiation of porcine muscle stem cells for cultured meat production [J]‍. Food Research International, 2022, 160: 111459‍.

[16] Pasitka L, Cohen M, Ehrlich A, al et‍. Spontaneous immortalization of chicken fibroblasts generates stable, high-yield cell lines for serum-free production of cultured meat [J]‍. Nature Food, 2022, 4: 35‒50‍.

[17] Nicholas G, Nicole D D, Eric S‍. Methods for extending the replicative capacity of somatic cells during an ex vivo cultivation process: WO-2017124100-A1 [P]‍. 2016-01-14[2022-12-15]‍.

[18] Soice E‍, Johnston J‍. Immortalizing cells for human consumption [J]‍. International Journal of Molecular Sciences, 2021, 22(21): 11660‍.

[19] Chin, Po S M, Chan‍, al et‍. Methods of meat production by in vitro cell cultivation: AU2020396360A1 [P]‍. 2020-07-28.

[20] Lykyan J K, Patricia B, Gentry C C, al et‍. Nutrient media for the production of slaughter-free meat: WO-2021248141-A1 [P]‍. 2020-06-05‍.

[21] Scheffler K, Claus C, Stanifer M L, al et‍. Reversible fusion proteins as a tool to enhance uptake of virus-functionalized LbL microcarriers [J]‍. Biomacromolecules, 2018, 19(8): 3212‒3223‍.

[22] Tsai A C, A‍ Pacak C. Bioprocessing of human mesenchymal stem cells: From planar culture to microcarrier-based bioreactors [J]‍. Bioengineering(Basel), 2021, 8(7): 96‍.

[23] Cai S X, Wu C X, Yang W G, al et‍. Recent advance in surface modification for regulating cell adhesion and behaviors [J]‍. Nanotechnology Reviews, 2020, 9(1): 971‒989‍.

[24] Li B Y, Wang X, Wang Y, al et‍. Past, present, and future of microcarrier-based tissue engineering [J]‍. Journal of Orthopaedic Translation, 2015, 3(2): 51‒57‍.

[25] Wu C Y, Stoecklein D, Kommajosula A, al et‍. Shaped 3D microcarriers for adherent cell culture and analysis [J]‍. Microsystems & Nanoengineering, 2018, 4(3): 1‒9‍.

[26] Ng S Y, Kurisawa M‍. Integrating biomaterials and food biopolymers for cultured meat production [J]‍. Acta Biomaterialia, 2021, 124: 108‒129‍.

[27] MacQueen L A, Alver C G, Chantre C O, al et‍. Muscle tissue engineering in fibrous gelatin: implications for meat analogs [J]‍. NPJ Science of Food, 2019, 3(20): 1‒12

[28] Bomkamp C, Skaalure S C, Fernando G F, al et‍. Scaffolding biomaterials for 3D cultivated meat: Prospects and challenges [J]‍. Advance Science(Weinh), 2022, 9(3): e2102908‍.

[29] 古希波 , 张英‍ . 生物安全柜的选择、安装与使用 [J]‍. 医疗卫生装备 , 2010 , 31 7 : 94 ‒ 96 ‍.
Gu X B , Zhang Y‍ . Selection, installation and operation of biosafety cabinet [J]‍. Chinese Medical Equipment Journal , 2010 , 31 7 : 94 ‒ 96 ‍.

[30] 阿尔祖古丽·阿依丁 , 阿依木古丽 , 乔自林 , 等‍ . 动物细胞生物反应器大规模培养技术研究进展 [J]‍. 甘肃畜牧兽医 , 2018 , 48 11 : 11 ‒ 13 ‍.
Aerzuguli A , Ayimuguli , Qiao Z L , al e t ‍. Advances in large-scale culture technology of animal cell bioreactor [J]‍. Gansu Animal Husbandry and Veterinary , 2018 , 48 11 : 11 ‒ 13 ‍.

[31] Bilgen B, Uygun K, Bueno E M, al et‍. Tissue growth modeling in a wavy-walled bioreactor [J]‍. Tissue Engineering Part A, 2009, 15(4): 761‒771‍.

[32] Food and Drug Administration‍. FDA completes first pre-market consultation for human food made using animal cell culture technology [EB/OL]‍. (2022-11-16)[2022-12-15]‍. https://www‍.fda‍.gov/food/cfsan-constituent-updates/fda-completes-first-pre-market-consultation-human-food-made-using-animal-cell-culture-technology‍. link1

[33] Pazmiño M F, Terán V, Calder S, al et‍. Single-use systems bioreactors in the biopharmaceutical industry and its use in SARS-CoV-2 candidate vaccine production—A review [J]‍. La Prensa Medica Argentina, 2021, 1: 1‒10‍.

[34] Matthew L, RAE B P C A, Gentry C C, al et‍. Systems, devices, and methods for sterilizing bioreactors and culture media: US-2022056394-A1 [P]‍. 2020-08-18‍.

[35] Takahashi K, Yamanaka S‍. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by eefined factors [J]‍. Cell, 2006, 126(4): 663‒676‍.

[36] Guan J Y, Wang G, Wang J L, al et‍. Chemical reprogramming of human somatic cells to pluripotent stem cells [J]‍. Nature, 2022, 605(7909): 325‒331‍.

[37] Kogut I, McCarthy S M, Pavlova M, al et‍. High-efficiency RNA-based reprogramming of human primary fibroblasts [J]‍. Nature Communications, 2018, 9(1): 745‍.

[38] Che X X, Guo J, Wang B K, al et‍. Rapid isolation of muscle-derived stem cells by discontinuous percoll density gradient centrifugation [J]‍. In Vitro Cellular & Developmental Biology‒Animal, 2011, 47(7): 454‒458‍.

[39] Syverud B C, Lee J D, VanDusen K W, al et‍. Isolation and purification of satellite cells for skeletal muscle tissue engineering [J]‍. Journal of Regenerative Medicine, 2014, 3(2): 117‍.

[40] Choi K H, Kim M, Yoon J W, al et‍. Purification of pig muscle stem cells using magnetic—Activated cell sorting(MACS) based on the expression of cluster of differentiation 29(CD29) [J]‍. Food Science of Animal Resources, 2020, 40(5): 852‒859‍.

[41] Stout A J, Mirliani A B, Rittenberg M L, al et‍. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat [J]‍. Communications Biology, 2022, 5(1): 466‍.

[42] Aswad H, Jalabert A, Rome S‍. Depleting extracellular vesicles from fetal bovine serum alters proliferation and differentiation of skeletal muscle cells in vitro [J]‍. BMC Biotechnology, 2016, 16: 32‍.

[43] Messmer T, Klevernic I, Furquim C, al et‍. A serum-free media formulation for cultured meat production supports bovine satellite cell differentiation in the absence of serum starvation [J]‍. Nature Food, 2022, 3(1): 74‒85‍.

[44] Domjan J, Pantea E, Gyurkes M, al et‍. Real-time amino acid and glucose monitoring system for the automatic control of nutrient feeding in CHO cell culture using Raman spectroscopy [J]‍. Biotechnology Journal, 2022, 17(5): e2100395‍.

[45] Yan Q Y, Fei Z C, Li M, al et‍. Naringenin promotes myotube formation and maturation for cultured meat production [J]‍. Foods, 2022, 11(23): 3755‍.

[46] Guan X, Pan Z H, Xu Z Y, al et‍. Natural flavonoid luteolin promotes the differentiation of porcine myoblasts through activation of PI3K/Akt/mTOR signaling [J]‍. Food Bioscience, 2022, 47: 101766‍.

[47] Kim M M, Audet J‍. On-demand serum-free media formulations for human hematopoietic cell expansion using a high dimensional search algorithm [J]‍. Communications Biology, 2019, 2(1): 48‍.

[48] Zhang C T, Guan X, Yu S Q, al et‍. Production of meat alternatives using live cells, cultures and plant proteins [J]‍. Current Opinion in Food Science, 2022, 43: 43‒52‍.

[49] 梅建国 , 庄金秋 , 王金良 , 等‍ . 动物细胞大规模培养技术 [J]‍. 中国生物工程杂志 , 2012 , 32 7 : 127 ‒ 132 ‍.
Mei J G , Zhuang J Q , Wang J L , al e t ‍. Advance of large-scale animal cell culture technology [J]‍. China Biotechnology , 2012 , 32 7 : 127 ‒ 132 ‍.

[50] 武发菊 , 刘萍 , 安芳兰 , 等‍ . BHK-21悬浮细胞流加培养的研究 [J]‍. 中国畜牧兽医 , 2014 , 41 6 : 150 ‒ 153 ‍.
Wu F J , Liu P , An F L , al e t ‍. Study on fed batch of BHK-21 suspension cells [J]‍. China Animal Husbandry Veterinary Medicine , 2014 , 41 6 : 150 ‒ 153 ‍.

[51] Mironov V, Kasyanov V A, Yost M J, al et‍. Cardiovascular tissue engineering I‍. Perfusion bioreactors: A review [J]‍. Journal of Long-term Effects of Medical Implants, 2006, 16(2): 111‒130‍.

[52] Tajsoleiman T, Mears L, Krühne U, al et‍. An industrial perspective on scale-down challenges using miniaturized bioreactors [J]‍. Trends in Biotechnology, 2019, 37(7): 697‒706‍.

[53] Polanco A, Kuang B, Yoon S‍. Bioprocess technologies that preserve the quality of iPSCs [J]‍. Trends in Biotechnology, 2020, 38(10): 1128‒1140‍.

[54] 王紫微 , 赵鑫锐 , 周景文 , 等‍ . 一种高效合成血红素的毕赤酵母重组菌株的构建 : CN114874929A [P]‍. 2022-06-10 ‍.
Wang Z W , Zhao X R , Zhou J W , al e t ‍. Construction of a recombinant strain of pichia pastoris that synthesizes heme efficiently : CN114874929A [P]‍. 2022-06-10 ‍.

[55] 赵鑫锐 , 余飞 , 王紫微 , 等‍ . 一种高效表达不同来源肌红蛋白血红蛋白毕赤酵母重组菌株的构建 : CN113136349A [P]‍. 2021-05-28 ‍.
Zhao X R , Yu F , Wang Z W , al e t ‍. Construction of a recombinant strain of pichia pastoris expressing myoglobinhemoglobin from different sources with high efficiency : CN113136349A [P]‍. 2021-05-28 ‍.

[56] 刘松 , 王兴隆 , 周景文‍ . 一种谷氨酰胺转氨酶复合酶及其在人造肉加工中的应用 : CN111518781A [P]‍. 2019-07-31 ‍.
Liu S , Wang X L , Zhou J W‍ . A glutamine transaminase complex enzyme and its application in cultured meat processing : CN111518781A [P]‍. 2019-07-31 ‍.

[57] 刘松 , 王兴隆 , 周景文 , 等‍ . 一种提高动物细胞来源人造肉形态品相的方法 : CN111513263A [P]‍. 2019-07-31 ‍.
Liu S , Wang X L , Zhou J W , al e t ‍. A method for improving the morphological appearance of cultured meat derived from animal cells : CN111513263A [P]‍. 2019-07-31 ‍.

[58] 弗朗索瓦丝·苏珊娜·马尔加‍ . 由培养的肌肉细胞制成的干燥的食物制品 : CN106413417A [P]‍. 2017-02-15 ‍.
S‍ Marga F . A dried food product made from cultured muscle cells : CN106413417A [P]‍. 2017-02-15 ‍.

[59] 周景文 , 张国强 , 赵鑫锐 , 等‍ . 未来食品的发展: 植物蛋白肉与细胞培养肉 [J]‍. 食品与生物技术学报 , 2020 , 39 10 : 1 ‒ 8 ‍.
Zhou J W , Zhang G Q , Zhao X R , al e t ‍. Future of food: Plant-based and cell-cultured meat [J]‍. Journal of Food Science and Biotechnology‍ . 2020 , 39 10 : 1 ‒ 8 ‍.

[60] Liu J J, Hocquette É, Ellies-Oury M P, al et‍. Chinese consumers´ attitudes and potential acceptance toward artificial meat [J]‍. Foods, 2021, 10(2): 353‍.

Related Research