Journal Home Online First Current Issue Archive For Authors Journal Information 中文版

Strategic Study of CAE >> 2024, Volume 26, Issue 2 doi: 10.15302/J-SSCAE-2024.07.006

Spatial Structure Characterization Technology and Engineering Practice of Ultra-deep Fault-Controlled Carbonate Reservoir

1. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China;

2. R&D Center for Ultra-deep Complex Reservoir Exploration and Development, China National Petroleum Corporation, Korla 841000, Xinjiang, China;

3. Engineering Research Center of Ultra-deep Complex Oil and Gas Reservoir Exploration and Development, Xinjiang Uygur Autonomous Region, Korla 841000, Xinjiang, China;

4. School of Geoscience, Yangtze University, Wuhan 430100, China;

5. Research Institute of Petroleum Exploration and Development, Beijing 100083, China;

6. School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China

Funding project:国家自然科学基金项目(42230812, 42230816);中国国石科技项目(2018E-1806, 2021DJ05) Received: 2023-12-21 Revised: 2024-02-21 Available online: 2024-03-25

Next Previous

Abstract

In the context of actively promoting deep geological engineering, ultra-deep fault-controlled fractured carbonate reservoirs have become a focal point in oil and gas exploration and development. Precise interpretation of ultra-deep strike-slip faults, internal configuration modeling of fractured reservoirs, assessment of reserves sculpted by fault control, efficient well deployment, and enhanced recovery have emerged as crucial scientific challenges and technological barriers in increasing reserves and production in the ultra-deep domain. This study comprehensively constructs fracture structural analysis techniques utilizing regional stress field research, outcrop analysis, three-dimensional seismic interpretation, and physical modeling; this is based on dynamics, kinematics, and geometry, as well as different stages, grades, properties, zones, and layers. It elucidates the vertical layering and lateral segmentation characteristics of strike-slip faults, revealing geological laws governing reservoir control, storage, and hydrocarbon accumulation, ultimately leading to the discovery of billion-ton-level mega oilfields in ultra-deep fault-controlled fractured reservoirs. Based on dynamic/static data, the internal configuration of fault-controlled fractured reservoirs is finely delineated, and a quantitative characterization of reservoirs is achieved through the integration of well‒seismic data, facilitating efficient well deployment and reservoir reserve assessment. This approach has supported the discovery and realization of billion-ton-level oil and gas reserves in the rich oilfields. Leveraging the quantitative characterization of fault-controlled reservoirs, targeted strategies to improve recovery rates are proposed, driving the efficient development of 5×106-ton mega oilfields, thereby establishing a paradigm for increasing reserves and production in ultra-deep fault-controlled carbonate reservoirs. This study could serve as a reference for similar oil and gas reservoir development in China.

Figures

图1

图2

图3

图4

图5

图6

图7

References

[ 1 ] 朱光有, 姜华, 黄士鹏, 等‍. 中国海相油气成藏理论新进展与超大型油气区预测 [J/OL]. 石油学报, 2023, [2024-02-28]. http://kns.cnki.net/kcms/detail/11.2128.TE.20230625.1736.002.html.
Zhu G Y, Jiang H, Huang S P, et al. New progress in Marine hydrocarbon accumulation theory and prediction of super-large oil and gas areas in China [J/OL]. Acta Petrolei Sinica, 2023, [2024-02-28]. http://kns.cnki.net/kcms/detail/11.2128.TE.20230625.1736.002.html.

[ 2 ] 张光亚, 马锋, 梁英波, 等‍. 全球深层油气勘探领域及理论技术进展 [J]. 石油学报, 2015, 36(9): 1156‒1166.
Zhang G Y, Ma F, Liang Y B, et al. Domain and theory-technology progress of global deep oil & gas exploration [J]. Acta Petrolei Sinica, 2015, 36(9): 1156‒1166.

[ 3 ] 朱光有, 杨海军, 苏劲, 等‍. 中国海相油气地质理论新进展 [J]. 岩石学报, 2012, 28(3): 722‒738.
Zhu G Y, Yang H J, Su J, et al. New progress of marine hydrocarbon geological theory in China [J]. Acta Petrologica Sinica, 2012, 28(3): 722‒738.

[ 4 ] Zhu G Y, Wang T S, Xie Z Y, et al. Giant gas discovery in the precambrian deeply buried reservoirs in the Sichuan Basin, China: Implications for gas exploration in old cratonic basins [J]. Precambrian Research, 2015, 262: 45‒66.

[ 5 ] Worden R H, Smalley P C. H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi [J]. Chemical Geology, 1996, 133(1/2/3/4): 157‒171.

[ 6 ] Zhu G Y, Wang H T, Weng N. TSR-altered oil with high-abundance thiaadamantanes of a deep-buried cambrian gas condensate reservoir in Tarim Basin [J]. Marine and Petroleum Geology, 2016, 69: 1‒12.

[ 7 ] Zhang Y, Muxworthy A R, Jia D, et al. Identifying and dating the destruction of hydrocarbon reservoirs using secondary chemical remanent magnetization [J]. Geophysical Research Letters, 2019, 46(20): 11100‒11108.

[ 8 ] 赵文智, 沈安江, 乔占峰, 等‍. 中国碳酸盐岩沉积储层理论进展与海相大油气田发现 [J]. 中国石油勘探, 2022, 27(4): 1‒15.
Zhao W Z, Shen A J, Qiao Z F, et al. Theoretical progress in carbonate reservoir and discovery of large marine oil and gas fields in China [J]. China Petroleum Exploration, 2022, 27(4): 1‒15.

[ 9 ] Zhu G Y, Wang H T, Weng N, et al. Use of comprehensive two-dimensional gas chromatography for the characterization of ultra-deep condensate from the Bohai Bay Basin, China [J]. Organic Geochemistry, 2013, 63: 8‒17.

[10] Zhu G Y, Chen F R, Wang M, et al. Discovery of the lower Cambrian high-quality source rocks and deep oil and gas exploration potential in the Tarim Basin, China [J]. AAPG Bulletin, 2018, 102(10): 2123‒2151.

[11] 顾忆, 黄继文, 贾存善, 等‍. 塔里木盆地海相油气成藏研究进展 [J]. 石油实验地质, 2020, 42(1): 1‒12.
Gu Y, Huang J W, Jia C S, et al. Research progress on marine oil and gas accumulation in Tarim Basin [J]. Petroleum Geology & Experiment, 2020, 42(1): 1‒12.

[12] 漆立新, 云露‍. 塔里木台盆区碳酸盐岩成藏模式与勘探实践 [J]. 石油实验地质, 2020, 42(5): 867‒876.
Qi L X, Yun L. Carbonate reservoir forming model and exploration in Tarim Basin [J]. Petroleum Geology & Experiment, 2020, 42(5): 867‒876.

[13] 杨海军, 张辉, 尹国庆, 等‍. 基于地质力学的地质工程一体化助推缝洞型碳酸盐岩高效勘探——以塔里木盆地塔北隆起南缘跃满西区块为例 [J]. 中国石油勘探, 2018, 23(2): 27‒36.
Yang H J, Zhang H, Yin G Q, et al. Geomechanics-based geology-engineering integration boosting high-efficiency exploration of fractured-vuggy carbonate reservoirs—A case study on West Yueman Block, Northern Tarim Basin [J]. China Petroleum Exploration, 2018, 23(2): 27‒36.

[14] 潘政屹, 徐凌, 张黎, 等‍. 全球深层碳酸盐岩气藏勘探现状与开发特征 [J]. 中国石油大学胜利学院学报, 2022, 36(3): 1‒12.
Pan Z Y, Xu L, Zhang L, et al. Characteristics of exploration and development for global deep carbonate gas reservoirs [J]. Journal of Shengli College China University of Petroleum, 2022, 36(3): 1‒12.

[15] 江同文, 韩剑发, 邬光辉, 等‍. 塔里木盆地塔中隆起断控复式油气聚集的差异性及主控因素 [J]. 石油勘探与开发, 2020, 47(2): 213‒224.
Jiang T W, Han J F, Wu G H, et al. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China [J]. Petroleum Exploration and Development, 2020, 47(2): 213‒224.

[16] 韩剑发, 苏洲, 陈利新, 等‍. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力 [J]. 石油学报, 2019, 40(11): 1296‒1310.
Han J F, Su Z, Chen L X, et al. Reservoir-controlling and accumulation-controlling of strike-slip faults and exploration potential in the platform of Tarim Basin [J]. Acta Petrolei Sinica, 2019, 40(11): 1296‒1310.

[17] 陈利新, 贾承造, 姜振学, 等‍. 塔里木盆地哈拉哈塘地区碳酸盐岩富油模式与主控因素 [J]. 石油学报, 2023, 44(6): 948‒961.
Chen L X, Jia C Z, Jiang Z X, et al. Oil enrichment model and main controlling factors of carbonate reservoirs in Halahatang Area, Tarim Basin [J]. Acta Petrolei Sinica, 2023, 44(6): 948‒961.

[18] 王清华, 杨海军, 张银涛, 等. 塔里木盆地富满油田富东1井奥陶系重大发现及意义 [J]. 中国石油勘探, 2023, 28(1): 47‒58.
Wang Q H, Yang H J, Zhang Y T, et al. Great discovery and its significance in the Ordovician in Well Fudong 1 in Fuman Oilfield, Tarim Basin [J]. China Petroleum Exploration, 2023, 28(1): 47‒58.

[19] Yang S, Wu G H, Zhu Y F, et al. Key oil accumulation periods of ultra-deep fault-controlled oil reservoir in northern Tarim Basin, NW China [J]. Petroleum Exploration and Development, 2022, 49(2): 285‒299.

[20] 韩剑发, 王彭, 朱光有, 等‍. 塔里木盆地超深层千吨井油气地质与高效区分布规律 [J]. 天然气地球科学, 2023, 34(5): 735‒748.
Han J F, Wang P, Zhu G Y, et al. Petroleum geology and distribution law of high efficiency areas in ultra-deep kiloton wells in Tarim Basin [J]. Natural Gas Geoscience, 2023, 34(5): 735‒748.

[21] 韩剑发, 于红枫, 张海祖, 等‍. 塔中地区北部斜坡带下奥陶统碳酸盐岩风化壳油气富集特征 [J]. 石油与天然气地质, 2008, 29(2): 167‒173, 188.
Han J F, Yu H F, Zhang H Z, et al. Characteristics of hydrocarbon enrichment in the Lower Ordovician carbonate rock weathering crust on the northern slope zone of Tazhong Area [J]. Oil & Gas Geology, 2008, 29(2): 167‒173, 188.

[22] 韩剑发, 梅廉夫, 杨海军, 等‍. 塔里木盆地塔中地区奥陶系碳酸盐岩礁滩复合体油气来源与运聚成藏研究 [J]. 天然气地球科学, 2007, 18(3): 426‒435.
Han J F, Mei L F, Yang H J, et al. The study of hydrocarbon origin, transport and accumulation in Tazhong Area, Tarim Basin [J]. Natural Gas Geoscience, 2007, 18(3): 426‒435.

[23] 杨海军, 郝芳, 韩剑发, 等‍. 塔里木盆地轮南低凸起断裂系统与复式油气聚集 [J]. 地质科学, 2007, 42(4): 795‒811.
Yang H J, Hao F, Han J F, et al. Fault systems and multiple oil-gas accumulation play of the Lunnan lower uplift, Tarim Basin [J]. Chinese Journal of Geology, 2007, 42(4): 795‒811.

[24] 韩剑发, 王招明, 潘文庆, 等‍. 轮南古隆起控油理论及其潜山准层状油气藏勘探 [J]. 石油勘探与开发, 2006, 33(4): 448‒453.
Han J F, Wang Z M, Pan W Q, et al. Petroleum controlling theory of Lunnan paleohigh and its buried hill pool exploration technology, Tarim Basin [J]. Petroleum Exploration and Development, 2006, 33(4): 448‒453.

[25] Liu J Q, Li Z, Wang X, et al. Tectonic-fluid evolution of an ultra-deep carbonate reservoir in the southern Halahatang Oilfield Area, Tarim Basin, NW China [J]. Marine and Petroleum Geology, 2022, 145: 105870.

[26] Zhu G Y, Li J F, Wang M, et al. Formation and distribution of ethanodiamondoids in deeply buried marine oil from the Tarim Basin, China [J]. Organic Geochemistry, 2021, 162: 104327.

[27] Zhu G Y, Li J F, Zhang Z Y, et al. Stability and cracking threshold depth of crude oil in 8000m ultra-deep reservoir in the Tarim Basin [J]. Fuel, 2020, 282: 118777.

[28] 宋兴国, 陈石, 谢舟, 等‍. 塔里木盆地富满油田东部走滑断裂发育特征与油气成藏 [J]. 石油与天然气地质, 2023, 44(2): 335‒349.
Song X G, Chen S, Xie Z, et al. Strike-slip faults and hydrocarbon accumulation in the eastern part of Fuman oilfield, Tarim Basin [J]. Oil & Gas Geology, 2023, 44(2): 335‒349.

[29] Zhu G Y, Milkov A V, Zhang Z Y, et al. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China [J]. Bulletin of the American Association of Petroleum Geologists, 2019, 103(7): 1703‒1743.

[30] 天工‍. 塔里木盆地新发现10亿吨级超深油气区 [J]. 天然气工业, 2021, 41(7): 133.
Tian G. Newly discovered 1 billion-ton ultra-deep oil and gas area in Tarim Basin [J]. Natural Gas Industry, 2021, 41(7): 133.

[31] Yao Y T, Zeng L B, Mao Z, et al. Differential deformation of a strike-slip fault in the paleozoic carbonate reservoirs of the Tarim Basin, China [J]. Journal of Structural Geology, 2023, 173: 104908.

[32] 韩剑发, 孙崇浩, 王振宇, 等‍. 塔中隆起碳酸盐岩叠合复合岩溶模式与油气勘探 [J]. 地球科学, 2017, 42(3): 410‒420.
Han J F, Sun C H, Wang Z Y, et al. Superimposed compound Karst model and oil and gas exploration of carbonate in Tazhong uplift [J]. Earth Science, 2017, 42(3): 410‒420.

[33] 杨海军, 蔡振忠, 李勇, 等‍. 塔里木盆地富满地区吐木休克组烃源岩有机地球化学特征及其油气勘探意义 [J/OL]. 地质科技通报, [2024-02-28]. https://doi.org/10.19509/j.cnki.dzkq.tb20220705.
Yang H J, Cai Z Z, Li Y, et al. Organic geochemical characteristics of source rocks in Tumuhe Formation, Fuman area, Tarim Basin and its significance for oil and gas exploration [J/OL]. Bulletin of Geological Science and Technology, [2024-02-28]. https://doi.org/10.19509/j.cnki.dzkq.tb20220705.

[34] Jiang T W, Han J F, Wu G H, et al. Differences and controlling factors of composite hydrocarbon accumulations in the Tazhong uplift, Tarim Basin, NW China [J]. Petroleum Exploration and Development Online, 2020, 47(2): 229‒241.

[35] 田军, 杨海军, 朱永峰, 等‍. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术 [J]. 石油学报, 2021, 42(8): 971‒985.
Tian J, Yang H J, Zhu Y F, et al. Geological conditions for hydrocarbon accumulation and key technologies for exploration and development in Fuman oilfield, Tarim Basin [J]. Acta Petrolei Sinica, 2021, 42(8): 971‒985.

[36] Bai Z K, Lü X X, Song Z X, et al. Characteristics of boundary fault systems and its hydrocarbon controlling on hydrocarbon accumulation in Awati Sag, Tarim Basin, China [J]. China Geology, 2019, 2(1): 94‒107.

[37] 王清华, 杨海军, 汪如军, 等‍. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新 [J]. 中国石油勘探, 2021, 26(4): 58‒71.
Wang Q H, Yang H J, Wang R J, et al. Discovery and exploration technology of fault-controlled large oil and gas fields of ultra-deep formation in strike slip fault zone in Tarim Basin [J]. China Petroleum Exploration, 2021, 26(4): 58‒71.

[38] 张驰, 储呈林, 徐勤琪, 等‍. 塔里木盆地阿克库勒凸起东南斜坡走滑断裂构造特征及油气地质意义 [J]. 地质学报, 2024, 98(2): 481‒493.
Zhang C, Chu C L, Xu Q Q, et al. Tectonic structural characteristics of strike-slip fault in southeast slope of Akkule uplift in Tarim basin, and its petroleum geological significance [J]. Acta Geologica Sinica, 2024, 98(2): 481‒493.

[39] 高利君, 李宗杰, 李海英, 等‍. 塔里木盆地深层岩溶缝洞型储层三维雕刻"五步法"定量描述技术研究与应用 [J]. 物探与化探, 2020, 44(3): 691‒697.
Gao L J, Li Z J, Li H Y, et al. The deep karst fissure and cavern reservoir in Tarim Basin carved in three dimensions: Research and application of "five-step method" quantitative description technology [J]. Geophysical and Geochemical Exploration, 2020, 44(3): 691‒697.

[40] Tian F, Luo X R, Zhang W. Integrated geological-geophysical characterizations of deeply buried fractured-vuggy carbonate reservoirs in Ordovician strata, Tarim Basin [J]. Marine and Petroleum Geology, 2019, 99: 292‒309.

[41] 孟伟‍. 碳酸盐岩岩溶缝洞型油气藏勘探开发关键技术——以塔河油田为例 [J]. 海相油气地质, 2006, 11(4): 48‒53.
Meng W. The key technologies for exploration and development of fractured/caverned karst reservoirs: A case of Tahe oil field, Tarim Basin [J]. Marine Origin Petroleum Geology, 2006, 11(4): 48‒53.

[42] Liu L J, Fan W P, Sun X, et al. Gas condensate well productivity in fractured vuggy carbonate reservoirs: A numerical modeling study [J]. Geoenergy Science and Engineering, 2023, 225: 211694.

[43] He Z L, Sun J F, Guo P H, et al. Construction of carbonate reservoir knowledge base and its application in fracture-cavity reservoir geological modeling [J]. Petroleum Exploration and Development Online, 2021, 48(4): 824‒834.

[44] Ni X F, Shen A J, Pan W Q, et al. Geological modeling of excellent fracture-vug carbonate reservoirs: A case study of the ordovician in the northern slope of Tazhong palaeouplift and the southern area of Tabei slope, Tarim Basin, NW China [J]. Petroleum Exploration and Development, 2013, 40(4): 444‒453.

[45] Ouyang S Q, Lyu X, Quan H, et al. Evolution process and factors influencing the tight carbonate caprock: Ordovician Yingshan Formation from the northern slope of the Tazhong uplift, Tarim Basin, China [J]. Marine and Petroleum Geology, 2023, 147: 105998.

[46] Lan X D, Lyu X X, Zhu Y M, et al. The geometry and origin of strike-slip faults cutting the Tazhong low rise megaanticline (central uplift, Tarim Basin, China) and their control on hydrocarbon distribution in carbonate reservoirs [J]. Journal of Natural Gas Science and Engineering, 2015, 22: 633‒645.

[47] 黄绪宝, 顾汉明‍. 塔河油田南部缝洞储层的正演模拟及地震波场特征 [J]. 石油与天然气地质, 2007, 28(6): 836‒840.
Huang X B, Gu H M. Forward modelling and seismic wave field characteristics of fractured-vuggy reservoirs in the southern part of Tahe oilfield [J]. Oil & Gas Geology, 2007, 28(6): 836‒840.

[48] Zhu D C, Zou H Y, Yang M L, et al. The middle permian maokou reservoir (southern Sichuan Basin, China): Controls on karst development and distribution [J]. Journal of Petroleum Science and Engineering, 2021, 204: 108686.

[49] 韩剑发, 程汉列, 施英, 等‍. 塔中缝洞型碳酸盐岩储层连通性分析及应用 [J]. 科学技术与工程, 2016, 16(5): 147‒153.
Han J F, Cheng H L, Shi Y, et al. Connectivity analysis and application of fracture cave carbonate reservoir in Tazhong [J]. Science Technology and Engineering, 2016, 16(5): 147‒153.

[50] Zhao X Q, Wu C D, Ma B S, et al. Characteristics and genetic mechanisms of fault-controlled ultra-deep carbonate reservoirs: A case study of ordovician reservoirs in the Tabei paleo-uplift, Tarim Basin, Western China [J]. Journal of Asian Earth Sciences, 2023, 254: 105745.

[51] 刘强, 张银涛, 陈石, 等‍. 塔里木盆地走滑断裂发育演化特征精细解析及其地质意义: 以富满油田FⅠ17断裂为例 [J]. 现代地质, 2023, 37(5): 1123‒1135.
Liu Q, Zhang Y T, Chen S, et al. Development and evolution characteristics of strike-slip faults in Tarim Basin and its geological significance: A case study of FⅠ17 fault in Fuman oilfield [J]. Geoscience, 2023, 37(5): 1123‒1135.

[52] Wang S, Liu H, Wu X, et al. Major period and process of hydrocarbon accumulation of deep reservoirs—A case study of Tuoputai Area in Tarim Basin, China [J]. Geoenergy Science and Engineering, 2023, 221: 111305.

[53] 宋周成, 翟文宝, 邓昌松, 等‍. 富满油田超深井井身结构优化技术与应用 [J]. 钻采工艺, 2022, 45(6): 36‒41.
Song Z C, Zhai W B, Deng C S, et al. Optimization technology and application of casing program of ultra-deep wells in fuman oilfield [J]. Drilling & Production Technology, 2022, 45(6): 36‒41.

[54] 蔡万春, 倪小威, 郇志鹏, 等. 直推存储式测井在富满油田超深地层中的应用优势及改进措施 [J]. 测井技术, 2022, 46(5): 536‒540.
Cai W C, Ni X W, Huan Z P, et al. Application advantages and improvement measures of direct push storage logging in ultra-deep formations in fuman oilfield [J]. Well Logging Technology, 2022, 46(5): 536‒540.

[55] 胡君毅, 周路‍. 裂缝检测分析方法在碳酸盐岩岩溶储层中的应用 [J]. 化工设计通讯, 2021, 47(3): 187‒188.
Hu J Y, Zhou L. Application of fracture detection and analysis method in carbonate karst reservoir [J]. Chemical Engineering Design Communications, 2021, 47(3): 187‒188.

[56] 李一, 钟广法, 宋继胜, 等‍. 梯度结构张量分析法在三维地震资料河道砂体预测中的应用 [J]. 天然气工业, 2011, 31(3): 44‒47, 110.
Li Y, Zhong G F, Song J S, et al. Application of the gradient structure tensor analysis method to the prediction of channel sand from 3D seismic data [J]. Natural Gas Industry, 2011, 31(3): 44‒47, 110.

[57] 靳大松, 霍如军, 张家振, 等‍. 塔里木油田富源区块钻井提速关键技术 [J]. 钻采工艺, 2021, 44(1): 125‒128.
Jin D S, Huo R J, Zhang J Z, et al. Key ROP improvement techniques for Fuyuan block in Tarim oilfield [J]. Drilling & Production Technology, 2021, 44(1): 125‒128.

[58] 韩忠艳, 耿宇迪, 赵文娜‍. 塔河油田缝洞型碳酸盐岩油藏水平井酸压技术 [J]. 石油钻探技术, 2009, 37(6): 94‒97.
Han Z Y, Geng Y D, Zhao W N. Fractured-vuggy carbonate reservoirs in Tahe oilfield [J]. Petroleum Drilling Techniques, 2009, 37(6): 94‒97.

[59] Zheng S Q, Yang M, Kang Z J, et al. Controlling factors of remaining oil distribution after water flooding and enhanced oil recovery methods for fracture-cavity carbonate reservoirs in Tahe oilfield [J]. Petroleum Exploration and Development, 2019, 46(4): 786‒795.

[60] Yuan D Y, Hou J R, Song Z J, et al. Residual oil distribution characteristic of fractured-cavity carbonate reservoir after water flooding and enhanced oil recovery by N2 flooding of fractured-cavity carbonate reservoir [J]. Journal of Petroleum Science and Engineering, 2015, 129: 15‒22.

[61] Wen Y C, Hou J R, Xiao X L, et al. Utilization mechanism of foam flooding and distribution situation of residual oil in fractured-vuggy carbonate reservoirs [J]. Petroleum Science, 2023, 20(3): 1620‒1639.

[62] 郑小敏, 孙雷, 王雷, 等‍. 缝洞型碳酸盐岩油藏水驱油机理物理模拟研究 [J]. 西南石油大学学报(自然科学版), 2010, 32(2): 89‒92.
Zheng X M, Sun L, Wang L, et al. Physical simulation of water displacing oil mechanism for vuggy fractured carbonate rock reservoir [J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2010, 32(2): 89‒92.

[63] Luo Z F, Zhang N L, Zhao L Q, et al. An extended finite element method for the prediction of acid-etched fracture propagation behavior in fractured-vuggy carbonate reservoirs [J]. Journal of Petroleum Science and Engineering, 2020, 191: 107170.

[64] 杨前雄, 熊伟, 高树生‍. 单缝洞系统内部流态的初步模拟研究 [J]. 石油钻采工艺, 2007, 29(3): 95‒96, 100, 127.
Yang Q X, Xiong W, Gao S S. Preliminary simulation of flow patterns in single fissure-cavern system [J]. Oil Drilling & Production Technology, 2007, 29(3): 95‒96, 100, 127.

[65] Abouelresh M O, Mahmoud M, Radwan A E, et al. Characterization and classification of the microporosity in the unconventional carbonate reservoirs: A case study from Hanifa Formation, Jafurah Basin, Saudi Arabia [J]. Marine and Petroleum Geology, 2022, 145: 105921.

[66] 计秉玉, 郑松青, 顾浩‍. 缝洞型碳酸盐岩油藏开发技术的认识与思考——以塔河油田和顺北油气田为例 [J]. 石油与天然气地质, 2022, 43(6): 1459‒1465.
Ji B Y, Zheng S Q, Gu H. On the development technology of fractured-vuggy carbonate reservoirs: A case study on Tahe oilfield and Shunbei oil and gas field [J]. Oil & Gas Geology, 2022, 43(6): 1459‒1465.

[67] 胡文革‍. 塔河碳酸盐岩缝洞型油藏开发技术及攻关方向 [J]. 油气藏评价与开发, 2020, 10(2): 1‒10.
Hu W G. Development technology and research direction of fractured-vuggy carbonate reservoirs in Tahe oilfield [J]. Reservoir Evaluation and Development, 2020, 10(2): 1‒10.

Related Research