Resource Type

Journal Article 234

Year

2023 44

2022 43

2021 34

2020 30

2019 26

2018 17

2017 18

2016 7

2015 1

2011 1

2010 1

2009 1

2008 1

2007 3

2006 1

2005 1

2004 1

2002 2

2001 2

open ︾

Keywords

Machine learning 42

Deep learning 34

Artificial intelligence 14

Reinforcement learning 14

Active learning 4

Data-driven 4

Bayesian optimization 3

Big data 3

Adaptive dynamic programming 2

Additive manufacturing 2

Attention 2

Autonomous driving 2

Autonomous learning 2

COVID-19 2

Classification 2

Feature learning 2

Materials design 2

Representation learning 2

Semi-supervised learning 2

open ︾

Search scope:

排序: Display mode:

A survey of script learning Review

Yi Han, Linbo Qiao, Jianming Zheng, Hefeng Wu, Dongsheng Li, Xiangke Liao,hanyi12@nudt.edu.cn,qiao.linbo@nudt.edu.cn,zhengjianming12@nudt.edu.cn,wuhefeng@mail.sysu.edu.cn,dsli@nudt.edu.cn,xkliao@nudt.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 3,   Pages 287-436 doi: 10.1631/FITEE.2000347

Abstract: Script is the structured knowledge representation of prototypical real-life event sequences. Learning the commonsense knowledge inside the script can be helpful for machines in understanding natural language and drawing commonsensible inferences. is an interesting and promising research direction, in which a trained system can process narrative texts to capture script knowledge and draw inferences. However, there are currently no survey articles on , so we are providing this comprehensive survey to deeply investigate the standard framework and the major research topics on . This research field contains three main topics: event representations, models, and evaluation approaches. For each topic, we systematically summarize and categorize the existing systems, and carefully analyze and compare the advantages and disadvantages of the representative systems. We also discuss the current state of the research and possible future directions.

Keywords: 脚本学习;自然语言处理;常识知识建模;事件推理    

Federated unsupervised representation learning Research Article

Fengda ZHANG, Kun KUANG, Long CHEN, Zhaoyang YOU, Tao SHEN, Jun XIAO, Yin ZHANG, Chao WU, Fei WU, Yueting ZHUANG, Xiaolin LI,fdzhang@zju.edu.cn,kunkuang@zju.edu.cn

Frontiers of Information Technology & Electronic Engineering 2023, Volume 24, Issue 8,   Pages 1181-1193 doi: 10.1631/FITEE.2200268

Abstract: To leverage the enormous amount of unlabeled data on distributed edge devices, we formulate a new problem in called federated unsupervised (FURL) to learn a common representation model without supervision while preserving data privacy. FURL poses two new challenges: (1) data distribution shift (non-independent and identically distributed, non-IID) among clients would make local models focus on different categories, leading to the inconsistency of representation spaces; (2) without unified information among the clients in FURL, the representations across clients would be misaligned. To address these challenges, we propose the federated contrastive averaging with dictionary and alignment (FedCA) algorithm. FedCA is composed of two key modules: a dictionary module to aggregate the representations of samples from each client which can be shared with all clients for consistency of representation space and an alignment module to align the representation of each client on a base model trained on public data. We adopt the contrastive approach for local model training. Through extensive experiments with three evaluation protocols in IID and non-IID settings, we demonstrate that FedCA outperforms all baselines with significant margins.

Keywords: Federated learning     Unsupervised learning     Representation learning     Contrastive learning    

Learning to select pseudo labels: a semi-supervised method for named entity recognition Research Articles

Zhen-zhen Li, Da-wei Feng, Dong-sheng Li, Xi-cheng Lu,lizhenzhen14@nudt.edu.cn,davyfeng.c@gmail.com,dsli@nudt.edu.cn,xclu@nudt.edu.cn

Frontiers of Information Technology & Electronic Engineering 2020, Volume 21, Issue 6,   Pages 809-962 doi: 10.1631/FITEE.1800743

Abstract: models have achieved state-of-the-art performance in (NER); the good performance, however, relies heavily on substantial amounts of labeled data. In some specific areas such as medical, financial, and military domains, labeled data is very scarce, while is readily available. Previous studies have used to enrich word representations, but a large amount of entity information in is neglected, which may be beneficial to the NER task. In this study, we propose a for NER tasks, which learns to create high-quality labeled data by applying a pre-trained module to filter out erroneous pseudo labels. Pseudo labels are automatically generated for and used as if they were true labels. Our semi-supervised framework includes three steps: constructing an optimal single neural model for a specific NER task, learning a module that evaluates pseudo labels, and creating new labeled data and improving the NER model iteratively. Experimental results on two English NER tasks and one Chinese clinical NER task demonstrate that our method further improves the performance of the best single neural model. Even when we use only pre-trained static word embeddings and do not rely on any external knowledge, our method achieves comparable performance to those state-of-the-art models on the CoNLL-2003 and OntoNotes 5.0 English NER tasks.

Keywords: 命名实体识别;无标注数据;深度学习;半监督学习方法    

New directions for artificial intelligence: human, machine, biological, and quantum intelligence Comment

Li WEIGANG,Liriam Michi ENAMOTO,Denise Leyi LI,Geraldo Pereira ROCHA FILHO

Frontiers of Information Technology & Electronic Engineering 2022, Volume 23, Issue 6,   Pages 984-990 doi: 10.1631/FITEE.2100227

Abstract:

This comment reviews the “once learning” mechanism (OLM) that was proposed byWeigang (1998), the subsequent success of “one-shot learning” in object categories (Li FF et al., 2003), and “you only look once” (YOLO) in objective detection (Redmon et al., 2016). Upon analyzing the current state of research in artificial intelligence (AI), we propose to divide AI into the following basic theory categories: artificial human intelligence (AHI), artificial machine intelligence (AMI), artificial biological intelligence (ABI), and artificial quantum intelligence (AQI). These can also be considered as the main directions of research and development (R&D) within AI, and distinguished by the following classification standards and methods: (1) human-, machine-, biological-, and quantum-oriented AI R&D; (2) information input processed by dimensionality increase or reduction; (3) the use of one/a few or a large number of samples for knowledge learning.

Keywords: 人工智能;机器学习;一次性学习;一瞥学习;量子计算    

Two-level hierarchical feature learning for image classification Article

Guang-hui SONG,Xiao-gang JIN,Gen-lang CHEN,Yan NIE

Frontiers of Information Technology & Electronic Engineering 2016, Volume 17, Issue 9,   Pages 897-906 doi: 10.1631/FITEE.1500346

Abstract: In some image classification tasks, similarities among different categories are different and the samples are usually misclassified as highly similar categories. To distinguish highly similar categories, more specific features are required so that the classifier can improve the classification performance. In this paper, we propose a novel two-level hierarchical feature learning framework based on the deep convolutional neural network (CNN), which is simple and effective. First, the deep feature extractors of different levels are trained using the transfer learning method that fine-tunes the pre-trained deep CNN model toward the new target dataset. Second, the general feature extracted from all the categories and the specific feature extracted from highly similar categories are fused into a feature vector. Then the final feature representation is fed into a linear classifier. Finally, experiments using the Caltech-256, Oxford Flower-102, and Tasmania Coral Point Count (CPC) datasets demonstrate that the expression ability of the deep features resulting from two-level hierarchical feature learning is powerful. Our proposed method effectively increases the classification accuracy in comparison with flat multiple classification methods.

Keywords: Transfer learning     Feature learning     Deep convolutional neural network     Hierarchical classification     Spectral clustering    

Non-IID Recommender Systems: A Review and Framework of Recommendation Paradigm Shifting Artical

Longbing Cao

Engineering 2016, Volume 2, Issue 2,   Pages 212-224 doi: 10.1016/J.ENG.2016.02.013

Abstract:

While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and services. A critical reason for such bad recommendations lies in the intrinsic assumption that recommended users and items are independent and identically distributed (IID) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-IID nature and characteristics of recommendation are discussed, followed by the non-IID theoretical framework in order to build a deep and comprehensive understanding of the intrinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-IID recommendation research triggers the paradigm shift from IID to non-IID recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues.

Keywords: Independent and identically distributed (IID)     Non-IID     Heterogeneity     Coupling relationship     Coupling learning     Relational learning     IIDness learning     Non-IIDness learning     Recommender system     Recommendation     Non-IID recommendation    

A review of computer graphics approaches to urban modeling from a machine learning perspective Review Article

Tian Feng, Feiyi Fan, Tomasz Bednarz,t.feng@latrobe.edu.au

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 7,   Pages 915-925 doi: 10.1631/FITEE.2000141

Abstract: facilitates the generation of virtual environments for various scenarios about cities. It requires expertise and consideration, and therefore consumes massive time and computation resources. Nevertheless, related tasks sometimes result in dissatisfaction or even failure. These challenges have received significant attention from researchers in the area of . Meanwhile, the burgeoning development of artificial intelligence motivates people to exploit , and hence improves the conventional solutions. In this paper, we present a review of approaches to in using in the literature published between 2010 and 2019. This serves as an overview of the current state of research on from a perspective.

Keywords: 城市建模;计算机图形学;机器学习;深度学习    

Learning Curve and Its Application in Production Operation al Research

Chen Zhixiang

Strategic Study of CAE 2007, Volume 9, Issue 7,   Pages 82-88

Abstract:

Learning curve is one character function that improves output by the experience accumulation of producer. Learning curve can be used to establish scientific cost plan, improve shop flow scheduling, labor quota and plan, quality, and so on. This paper reviews the research literatures, introduces different forms of learning curve, analyzes their characters, and discusses the future directions of application of learning curve.

Keywords: learning curve     operational management     behaviors research    

Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with a Physics-Informed Deep Learning Model Article

Mingzhi Zhao, Huiliang Wei, Yiming Mao, Changdong Zhang, Tingting Liu, Wenhe Liao

Engineering 2023, Volume 23, Issue 4,   Pages 181-195 doi: 10.1016/j.eng.2022.09.015

Abstract:

Molten pool characteristics have a significant effect on printing quality in laser powder bed fusion (PBF), and quantitative predictions of printing parameters and molten pool dimensions are critical to the intelligent control of the complex processes in PBF. Thus far, bidirectional predictions of printing parameters and molten pool dimensions have been challenging due to the highly nonlinear correlations involved. To
address this issue, we integrate an experiment on molten pool characteristics, a mechanistic model, and deep learning to achieve both forward and inverse predictions of key parameters and molten pool characteristics during laser PBF. The experiment provides fundamental data, the mechanistic model significantly augments the dataset, and the multilayer perceptron (MLP) deep learning model predicts the molten pool dimensions and process parameters based on the dataset built from the experiment and the mechanistic model. The results show that bidirectional predictions of the molten pool dimensions and process parameters can be realized, with the highest prediction accuracies approaching 99.9% and mean prediction accuracies of over 90.0%. Moreover, the prediction accuracy of the MLP model is closely related to the characteristics of the dataset—that is, the learnability of the dataset has a crucial impact on the prediction accuracy. The highest prediction accuracy is 97.3% with enhancement of the dataset via the mechanistic model, while the highest prediction accuracy is 68.3% when using only the experimental dataset. The prediction accuracy of the MLP model largely depends on the quality of the dataset as well. The research results demonstrate that bidirectional predictions of complex correlations using MLP are feasible for laser PBF, and offer a novel and useful framework for the determination of process conditions and outcomes for intelligent additive manufacturing.

 

Keywords: Additive manufacturing     Molten pool     Model     Deep learning     Learnability    

Communicative Learning: A Unified Learning Formalism Review

Luyao Yuan, Song-Chun Zhu

Engineering 2023, Volume 25, Issue 6,   Pages 77-100 doi: 10.1016/j.eng.2022.10.017

Abstract:

In this article, we propose a communicative learning (CL) formalism that unifies existing machine learning paradigms, such as passive learning, active learning, algorithmic teaching, and so forth, and facilitates the development of new learning methods. Arising from human cooperative communication, this formalism poses learning as a communicative process and combines pedagogy with the burgeoning field of machine learning. The pedagogical insight facilitates the adoption of alternative information sources in machine learning besides randomly sampled data, such as intentional messages given by a helpful teacher. More specifically, in CL, a teacher and a student exchange information with each other collaboratively to transmit and acquire certain knowledge. Each agent has a mind, which includes the agent's knowledge, utility, and mental dynamics. To establish effective communication, each agent also needs an estimation of its partner's mind. We define expressive mental representations and learning formulation sufficient for such recursive modeling, which endows CL with human-comparable learning efficiency. We demonstrate the application of CL to several prototypical collaboration tasks and illustrate that this formalism allows learning protocols to go beyond Shannon's communication limit. Finally, we present our contribution to the foundations of learning by putting forth hierarchies in learning and defining the halting problem of learning.

Keywords: Artificial intelligencehine     Cooperative communication     Machine learning     Pedagogy     Theory of mind    

A Robust Transfer Dictionary Learning Algorithm for Industrial Process Monitoring Article

Chunhua Yang, Huiping Liang, Keke Huang, Yonggang Li, Weihua Gui

Engineering 2021, Volume 7, Issue 9,   Pages 1262-1273 doi: 10.1016/j.eng.2020.08.028

Abstract:

Data-driven process-monitoring methods have been the mainstream for complex industrial systems due to their universality and the reduced need for reaction mechanisms and first-principles knowledge. However, most data-driven process-monitoring methods assume that historical training data and online testing data follow the same distribution. In fact, due to the harsh environment of industrial systems, the
collected data from real industrial processes are always affected by many factors, such as the changeable operating environment, variation in the raw materials, and production indexes. These factors often cause the distributions of online monitoring data and historical training data to differ, which induces a model mismatch in the process-monitoring task. Thus, it is difficult to achieve accurate process monitoring when a model learned from training data is applied to actual online monitoring. In order to resolve the problem of the distribution divergence between historical training data and online testing data that is induced by changeable operation environments, a robust transfer dictionary learning (RTDL) algorithm is proposed in this paper for industrial process monitoring. The RTDL is a synergy of representative learning and domain adaptive transfer learning. The proposed method regards historical training data and online testing data as the source domain and the target domain, respectively, in the transfer learning problem. Maximum mean discrepancy regularization and linear discriminant analysis-like regularization are then incorporated into the dictionary learning framework, which can reduce the distribution divergence between the source domain and target domain. In this way, a robust dictionary can be learned even if the characteristics of the source domain and target domain are evidently different under the interference of a realistic and changeable operation environment. Such a dictionary can effectively improve the performance of process monitoring and mode classification. Extensive experiments including a numerical simulation and two industrial systems are conducted to verify the efficiency and superiority of the proposed method.

Keywords: Process monitoring     Multimode process     Dictionary learning     Transfer learning    

Pre-training with asynchronous supervised learning for reinforcement learning based autonomous driving Research Articles

Yunpeng Wang, Kunxian Zheng, Daxin Tian, Xuting Duan, Jianshan Zhou,ypwang@buaa.edu.cn,zhengkunxian@buaa.edu.cn,dtian@buaa.edu.cn,duanxuting@buaa.edu.cn

Frontiers of Information Technology & Electronic Engineering 2021, Volume 22, Issue 5,   Pages 615-766 doi: 10.1631/FITEE.1900637

Abstract: Rule-based autonomous driving systems may suffer from increased complexity with large-scale inter-coupled rules, so many researchers are exploring learning-based approaches. (RL) has been applied in designing autonomous driving systems because of its outstanding performance on a wide variety of sequential control problems. However, poor initial performance is a major challenge to the practical implementation of an RL-based autonomous driving system. RL training requires extensive training data before the model achieves reasonable performance, making an RL-based model inapplicable in a real-world setting, particularly when data are expensive. We propose an asynchronous (ASL) method for the RL-based end-to-end autonomous driving model to address the problem of poor initial performance before training this RL-based model in real-world settings. Specifically, prior knowledge is introduced in the ASL pre-training stage by asynchronously executing multiple processes in parallel, on multiple driving demonstration data sets. After pre-training, the model is deployed on a real vehicle to be further trained by RL to adapt to the real environment and continuously break the performance limit. The presented pre-training method is evaluated on the race car simulator, TORCS (The Open Racing Car Simulator), to verify that it can be sufficiently reliable in improving the initial performance and convergence speed of an end-to-end autonomous driving model in the RL training stage. In addition, a real-vehicle verification system is built to verify the feasibility of the proposed pre-training method in a real-vehicle deployment. Simulations results show that using some demonstrations during a supervised pre-training stage allows significant improvements in initial performance and convergence speed in the RL training stage.

Keywords: 自主驾驶;自动驾驶车辆;强化学习;监督学习    

Max-margin basedBayesian classifier Article

Tao-cheng HU,Jin-hui YU

Frontiers of Information Technology & Electronic Engineering 2016, Volume 17, Issue 10,   Pages 973-981 doi: 10.1631/FITEE.1601078

Abstract: There is a tradeoff between generalization capability and computational overhead in multi-class learning. We propose a generative probabilistic multi-class classifier, considering both the generalization capability and the learning/prediction rate. We show that the classifier has a max-margin property. Thus, prediction on future unseen data can nearly achieve the same performance as in the training stage. In addition, local variables are eliminated, which greatly simplifies the optimization problem. By convex and probabilistic analysis, an efficient online learning algorithm is developed. The algorithm aggregates rather than averages dualities, which is different from the classical situations. Empirical results indicate that our method has a good generalization capability and coverage rate.

Keywords: Multi-class learning     Max-margin learning     Online algorithm    

NGAT: attention in breadth and depth exploration for semi-supervised graph representation learning Research Articles

Jianke HU, Yin ZHANG,yinzh@zju.edu.cn

Frontiers of Information Technology & Electronic Engineering 2022, Volume 23, Issue 3,   Pages 409-421 doi: 10.1631/FITEE.2000657

Abstract: Recently, graph neural networks (GNNs) have achieved remarkable performance in representation learning on graph-structured data. However, as the number of network layers increases, GNNs based on the neighborhood aggregation strategy deteriorate due to the problem of oversmoothing, which is the major bottleneck for applying GNNs to real-world graphs. Many efforts have been made to improve the process of feature information aggregation from directly connected nodes, i.e., breadth exploration. However, these models perform the best only in the case of three or fewer layers, and the performance drops rapidly for deep layers. To alleviate oversmoothing, we propose a nested graph network (NGAT), which can work in a semi-supervised manner. In addition to breadth exploration, a -layer NGAT uses a layer-wise aggregation strategy guided by the mechanism to selectively leverage feature information from the -order neighborhood, i.e., depth exploration. Even with a 10-layer or deeper architecture, NGAT can balance the need for preserving the locality (including root node features and the local structure) and aggregating the information from a large neighborhood. In a number of experiments on standard tasks, NGAT outperforms other novel models and achieves state-of-the-art performance.

Keywords: Graph learning     Semi-supervised learning     Node classification     Attention    

Machine Learning Produces Superhuman Chip Designs

Robert Pollie,

Engineering 2022, Volume 10, Issue 3,   Pages 7-9 doi: 10.1016/j.eng.2022.01.006

Title Author Date Type Operation

A survey of script learning

Yi Han, Linbo Qiao, Jianming Zheng, Hefeng Wu, Dongsheng Li, Xiangke Liao,hanyi12@nudt.edu.cn,qiao.linbo@nudt.edu.cn,zhengjianming12@nudt.edu.cn,wuhefeng@mail.sysu.edu.cn,dsli@nudt.edu.cn,xkliao@nudt.edu.cn

Journal Article

Federated unsupervised representation learning

Fengda ZHANG, Kun KUANG, Long CHEN, Zhaoyang YOU, Tao SHEN, Jun XIAO, Yin ZHANG, Chao WU, Fei WU, Yueting ZHUANG, Xiaolin LI,fdzhang@zju.edu.cn,kunkuang@zju.edu.cn

Journal Article

Learning to select pseudo labels: a semi-supervised method for named entity recognition

Zhen-zhen Li, Da-wei Feng, Dong-sheng Li, Xi-cheng Lu,lizhenzhen14@nudt.edu.cn,davyfeng.c@gmail.com,dsli@nudt.edu.cn,xclu@nudt.edu.cn

Journal Article

New directions for artificial intelligence: human, machine, biological, and quantum intelligence

Li WEIGANG,Liriam Michi ENAMOTO,Denise Leyi LI,Geraldo Pereira ROCHA FILHO

Journal Article

Two-level hierarchical feature learning for image classification

Guang-hui SONG,Xiao-gang JIN,Gen-lang CHEN,Yan NIE

Journal Article

Non-IID Recommender Systems: A Review and Framework of Recommendation Paradigm Shifting

Longbing Cao

Journal Article

A review of computer graphics approaches to urban modeling from a machine learning perspective

Tian Feng, Feiyi Fan, Tomasz Bednarz,t.feng@latrobe.edu.au

Journal Article

Learning Curve and Its Application in Production Operation al Research

Chen Zhixiang

Journal Article

Predictions of Additive Manufacturing Process Parameters and Molten Pool Dimensions with a Physics-Informed Deep Learning Model

Mingzhi Zhao, Huiliang Wei, Yiming Mao, Changdong Zhang, Tingting Liu, Wenhe Liao

Journal Article

Communicative Learning: A Unified Learning Formalism

Luyao Yuan, Song-Chun Zhu

Journal Article

A Robust Transfer Dictionary Learning Algorithm for Industrial Process Monitoring

Chunhua Yang, Huiping Liang, Keke Huang, Yonggang Li, Weihua Gui

Journal Article

Pre-training with asynchronous supervised learning for reinforcement learning based autonomous driving

Yunpeng Wang, Kunxian Zheng, Daxin Tian, Xuting Duan, Jianshan Zhou,ypwang@buaa.edu.cn,zhengkunxian@buaa.edu.cn,dtian@buaa.edu.cn,duanxuting@buaa.edu.cn

Journal Article

Max-margin basedBayesian classifier

Tao-cheng HU,Jin-hui YU

Journal Article

NGAT: attention in breadth and depth exploration for semi-supervised graph representation learning

Jianke HU, Yin ZHANG,yinzh@zju.edu.cn

Journal Article

Machine Learning Produces Superhuman Chip Designs

Robert Pollie,

Journal Article