期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第6期 doi: 10.1016/j.eng.2017.05.001

面向绿色化工应用的陶瓷催化膜反应器的设计与制备

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China

收稿日期: 2017-04-13 修回日期: 2017-05-11 录用日期: 2017-05-11 发布日期: 2018-11-14

下一篇 上一篇

摘要

催化膜反应器将反应和分离耦合在一个单元,在化工生产中被视为一种绿色的化工新工艺。而在催化膜反应器中采用陶瓷膜可以使膜反应器的应用范围扩展到一些苛刻环境。本文介绍了基于气体分离的致密陶瓷催化膜反应器和基于非均相体系分离的多孔陶瓷催化膜反应器,评述了近10 年两种不同种类的膜反应器的最新进展以及本课题组的相关工作。面向能源、环境领域的应用,对膜反应器的设计、制备及应用展开重点讨论。针对各个膜反应器,从膜及膜反应器构型入手,以典型的催化反应为例,对膜反应器的设计及优化进行详细论述,最后探讨了进一步发展所面临的瓶颈和可能取得突破的方向,以及膜与膜反应器未来发展应重点关注的领域。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Dixon AG. Recent research in catalytic inorganic membrane reactors. Int J Chem React Eng 2003;1(1):R6. 链接1

[ 2 ] Sanchez Marcano JG, Tsotsis TT. Catalytic membranes and membrane reactors. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2004.

[ 3 ] Thursfield A, Murugan A, Franca R, Metcalfe IS. Chemical looping and oxygen permeable ceramic membranes for hydrogen production—a review. Energy Environ Sci 2012;5(6):7421–59. 链接1

[ 4 ] Dong X, Jin W, Xu N, Li K. Dense ceramic catalytic membranes and membrane reactors for energy and environmental applications. Chem Commun (Camb) 2011;47(39):10886–902. 链接1

[ 5 ] Bouwmeester HJM. Dense ceramic membranes for methane conversion. Catal Today 2003;82(1–4):141–50. 链接1

[ 6 ] Yang W, Wang H, Zhu X, Lin L. Development and application of oxygen permeable membrane in selective oxidation of light alkanes. Top Catal 2005;35(1–2):155–67. 链接1

[ 7 ] Liu Y, Tan X, Li K. Mixed conducting ceramics for catalytic membrane processing. Catal Rev Sci Eng 2006;48(2):145–98. 链接1

[ 8 ] Wei Y, Yang W, Caro J, Wang H. Dense ceramic oxygen permeable membranes and catalytic membrane reactors. Chem Eng J 2013;220:185–203. 链接1

[ 9 ] Bouwmeester HJM, Burggraaf AJ. Dense ceramic membranes for oxygen separation. In: The CRC handbook of solid state electrochemistry. Boca Raton: CRC Press; 1997. p. 481–553.

[10] Sunarso J, Baumann S, Serra JM, Meulenberg WA, Liu S, Lin YS, et al. Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J Membr Sci 2008;320(1–2):13–41. 链接1

[11] Ollis DF. Integrating photocatalysis and membrane technologies for water treatment. Ann N Y Acad Sci 2003;984:65–84. 链接1

[12] Molinari R, Palmisano L. Photocatalytic membrane reactors in water purification. In: Lehr JH, Keeley JW, Lehr JK, editors. Water encyclopedia: domestic, municipal and industrial water supply and waste disposal. New Jersey: John Wiley & Sons, Inc.; 2005. p. 791–7. 链接1

[13] Augugliaro V, Litter M, Palmisano L, Soria J. The combination of heterogeneous photocatalysis with chemical and physical operations: a tool for improving the photoprocess performance. J Photochem Photobiol Photochem Rev 2006;7(4):127–44. 链接1

[14] Mozia S. Photocatalytic membrane reactors (PMRs) in water and wastewater treatment, a review. Separ Purif Tech 2010;73(2):71–91. 链接1

[15] Geffroy PM, Reichmann M, Kilmann L, Jouin J, Richet N, Chartier T. Identification of the rate-determining step in oxygen transport through La(1–x)SrxFe(1y)GayO3d perovskite membranes. J Membr Sci 2015;476:340–7. 链接1

[16] Fernández-González R, Molina T, Savvin S, Moreno R, Makradi A, Nunez P. Characterization and fabrication of LSCF tapes. J Eur Ceram Soc 2014;34 (4):953–9. 链接1

[17] Reichmann M, Geffroy PM, Fouletier J, Richet N, Chartier T. Effect of cation substitution in the A site on the oxygen semi-permeation flux in La0.5A0.5Fe0.7Ga0.3O3d and La0.5A0.5Fe0.7Co0.3O3d dense perovskite membranes with A = Ca, Sr and Ba (part I). J Power Sources 2014;261:175–83. 链接1

[18] Repasky JM, Foster EP, Armstrong PA, Stein VE, Anderson LL. ITM oxygen development for advanced oxygen supply. San Francisco: Gasification Technologies Council; 2011.

[19] Gromada M, Trawczynski J, Wierzbicki M, Zawadzki M. Effect of forming techniques on efficiency of tubular oxygen separating membranes. Ceram Int 2017;43(1):256–61. 链接1

[20] Wu Z, Hidayati Othman N, Zhang G, Liu Z. Jin W, Li K. Effects of fabrication processes on oxygen permeation of Nb2O5-doped SrCo0.8Fe0.2O3d microtubular membranes. J Membr Sci 2013;442:1–7. 链接1

[21] Salehi M, Pfaff EM, Junior RM, Bergmann CP, Diethelm S, Neururer C, et al. Ba0.5Sr0.5Co0.8Fe0.2O3d (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes. J Membr Sci 2013;443:237–45. 链接1

[22] Cruz RT, Bragança SR, Bergmann CP, Graule T, Clemens F. Preparation of Ba0.5Sr0.5Co0.8Fe0.2O3d (BSCF) feedstocks with different thermoplastic binders and their use in the production of thin tubular membranes by extrusion. Ceram Int 2014;40(5):7531–8. 链接1

[23] Zhang C, Xu Z, Chang X, Zhang Z, Jin W. Preparation and characterization of mixed-conducting thin tubular membrane. J Membr Sci 2007;299(1–2):261–7. 链接1

[24] Xu N, Li S, Jin W, Shi J, Lin Y. Experimental and modeling study on tubular dense membranes for oxygen permeation. AIChE J 1999;45(12):2519–26. 链接1

[25] Nagendra N, Bandopadhyay S. Room and elevated temperature strength of perovskite membrane tubes. J Eur Ceram Soc 2003;23(9):1361–8. 链接1

[26] Li S, Jin W, Huang P, Xu N, Shi J, Lin Y. Tubular lanthanum cobaltite perovskite type membrane for oxygen permeation. J Membr Sci 2000;166(1):51–61. 链接1

[27] Kaletsch A, Pfaff EM, Broeckmann C, Modigell M, Nauels N. Pilot module for oxygen separation with BSCF membranes. In: 2nd International Conference on Energy Process Engineering; 2011 Jun 20–22; Frankfurt, Germany. Frankfurt: DECHEMA; 2011. 链接1

[28] Tan X, Wang Z, Meng B, Meng X, Li K. Pilot-scale production of oxygen from air using perovskite hollow fibre membranes. J Membr Sci 2010;352(1– 2):189–96. 链接1

[29] Meng B, Wang Z, Tan X, Liu S. SrCo0.9Sc0.1O3–d perovskite hollow fibre membranes for air separation at intermediate temperatures. J Eur Ceram Soc 2009;29(13):2815–22. 链接1

[30] Vivet A, Geffroy PM, Coudert V, Fouletier J, Richet N, Chartier T. Influence of glass and gold sealants materials on oxygen permeation performances in La0.8Sr0.2Fe0.7Ga0.3O3d perovskite membranes. J Membr Sci 2011;366(1– 2):132–8. 链接1

[31] Chen Y, Qian B, Hao Y, Liu S, Tade M, Shao Z. Influence of sealing materials on the oxygen permeation fluxes of some typical oxygen ion conducting ceramic membranes. J Membr Sci 2014;470:102–11. 链接1

[32] Faaland S, Einarsrud MA, Grande T. Reactions between calcium- and strontium-substituted lanthanum cobaltite ceramic membranes and calcium silicate sealing materials. Chem Mater 2001;13(3):723–32. 链接1

[33] Qi X, Akin FT, Lin Y. Ceramic-glass composite high temperature seals for dense ionic-conducting ceramic membranes. J Membr Sci 2001;193 (2):185–93. 链接1

[34] Bouwmeester HJM, Kruidhof H, Burggraaf AJ. Importance of the surface exchange kinetics as rate limiting step in oxygen permeation through mixedconducting oxides. Solid State Ion 1994;72:185–94. 链接1

[35] Chang X, Zhang C, Jin W, Xu N. Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes. J Membr Sci 2006;285(1–2):232–8. 链接1

[36] Jin W, Li S, Huang P, Xu N, Shi J. Preparation of an asymmetric perovskite-type membrane and its oxygen permeability. J Membr Sci 2001;185(2):237–43. 链接1

[37] Dong X, Zhang G, Liu Z, Zhong Z, Jin W, Xu N. CO2-tolerant mixed conducting oxide for catalytic membrane reactor. J Membr Sci 2009;340(1–2):141–7. 链接1

[38] Wu Z, Wang B, Li K. Functional LSM-ScSZ/NiO-ScSZ dual-layer hollow fibres for partial oxidation of methane. Int J Hydrogen Energy 2011;36(9):5334–41. 链接1

[39] Liu T, Chen Y, Fang S, Lei L, Wang Y, Ren C, et al. A dual-phase bilayer oxygen permeable membrane with hierarchically porous structure fabricated by freeze-drying tape-casting method. J Membr Sci 2016;520:354–63. 链接1

[40] Liu ZK, Zhu JW, Jin WQ. Preparation and characterization of mixedconducting supported hollow fiber membrane. J Inorg Mater 2015;30 (6):621–6.

[41] Meng X, Ding W, Jin R, Wang H, Gai Y, Ji F, et al. Two-step fabrication of BaCo0.7Fe0.2Nb0.1O3-d asymmetric oxygen permeable membrane by dip coating. J Membr Sci 2014;450:291–8. 链接1

[42] Liu Z, Zhang G, Dong X, Jiang W, Jin W, Xu N. Fabrication of asymmetric tubular mixed-conducting dense membranes by a combined spin-spraying and co-sintering process. J Membr Sci 2012;415–416:313–9. 链接1

[43] Wang H, Werth S, Schiestel T, Caro J. Perovskite hollow-fiber membranes for the production of oxygen-enriched air. Angew Chem Int Ed Engl 2005;44 (42):6906–9. 链接1

[44] Tan X, Liu Y, Li K. Mixed conducting ceramic hollow-fiber membranes for air separation. AIChE J 2005;51(7):1991–2000. 链接1

[45] Leo A, Smart S, Liu S, da Costa JCD. High performance perovskite hollow fibres for oxygen separation. J Membr Sci 2011;368(1–2):64–8. 链接1

[46] Chi Y, Li T, Wang B, Wu Z, Morphology Li K. performance and stability of multi-bore capillary La0.6Sr0.4Co0.2Fe0.8O3-d oxygen transport membranes. J Membr Sci 2017;529:224–33. 链接1

[47] Zhu J, Guo S, Liu G, Liu Z, Zhang Z, Jin W. A robust mixed-conducting multichannel hollow fiber membrane reactor. AIChE J 2015;61(8):2592–9. 链接1

[48] Zhu J, Liu Z, Guo S, Jin W. Influence of permeation modes on oxygen permeability of the multichannel mixed-conducting hollow fibre membrane. Chem Eng Sci 2015;122:614–21. 链接1

[49] Zhu J, Dong Z, Liu Z, Zhang K, Zhang G, Jin W. Multichannel mixed-conducting hollow fiber membranes for oxygen separation. AIChE J 2014;60(6):1969–76. 链接1

[50] Saracco G, Neomagus HWJP, Versteeg GF, Swaaij WPM. High-temperature membrane reactors: potential and problems. Chem Eng Sci 1999;54(13– 4):1997–2017. 链接1

[51] Tsai CY, Dixon AG, Moser WR, Ma YH. Dense perovskite membrane reactors for partial oxidation of methane to syngas. AIChE J 1997;43 (S11):2741–50. 链接1

[52] Wang H, Tablet C, Feldhoff A, Caro J. A cobalt-free oxygen-permeable membrane based on the perovskite-type oxide Ba0.5Sr0.5Zn0.2Fe0.8O3-d. Adv Mater 2005;17(14):1785–8. 链接1

[53] Shao Z, Dong H, Xiong G, Cong Y, Yang W. Performance of a mixed-conducting ceramic membrane reactor with high oxygen permeability for methane conversion. J Membr Sci 2001;183(2):181–92. 链接1

[54] Jin W, Li S, Huang P, Xu N, Shi J, Lin Y. Tubular lanthanum cobaltite perovskite-type membrane reactors for partial oxidation of methane to syngas. J Membr Sci 2000;166(1):13–22. 链接1

[55] Jiang H, Wang H, Werth S, Schiestel T, Caro J. Simultaneous production of hydrogen and synthesis gas by combining water splitting with partial oxidation of methane in a hollow-fiber membrane reactor. Angew Chem Int Ed Engl 2008;47(48):9341–4. 链接1

[56] Tan X, Pang Z, Gu Z, Liu S. Catalytic perovskite hollow fibre membrane reactors for methane oxidative coupling. J Membr Sci 2007;302(1–2):109–14. 链接1

[57] Tan X, Li K. Oxidative coupling of methane in a perovskite hollow-fiber membrane reactor. Ind Eng Chem Res 2006;45(1):142–9. 链接1

[58] Wang H, Cong Y, Yang W. Oxidative coupling of methane in Ba0.5Sr0.5Co0.8Fe0.2O3d tubular membrane reactors. Catal Today 2005;104 (2–4):160–7. 链接1

[59] Zeng Y, Lin Y, Swartz SL. Perovskite-type ceramic membrane: synthesis, oxygen permeation and membrane reactor performance for oxidative coupling of methane. J Membr Sci 1998;150(1):87–98. 链接1

[60] Elshof JET, Bouwmeester HJM, Verweij H. Oxidative coupling of methane in a mixed-conducting perovskite membrane reactor. Appl Catal A Gen 1995;130 (2):195–212. 链接1

[61] Lobera MP, Escolástico S, Serra JM. High ethylene production through oxidative dehydrogenation of ethane membrane reactors based on fast oxygen-ion conductors. ChemCatChem 2011;3(9):1503–8. 链接1

[62] Jiang H, Cao Z, Schirrmeister S, Schiestel T, Caro J. A coupling strategy to produce hydrogen and ethylene in a membrane reactor. Angew Chem Int Ed Engl 2010;49(33):5656–60. 链接1

[63] Czuprat O, Werth S, Caro J, Schiestel T. Oxidative dehydrogenation of propane in a perovskite membrane reactor with multi-step oxygen insertion. AIChE J 2010;56(9):2390–6. 链接1

[64] Czuprat O, Werth S, Schirrmeister S, Schiestel T, Caro J. Olefin production by a multistep oxidative dehydrogenation in a perovskite hollow-fiber membrane reactor. ChemCatChem 2009;1(3):401–5. 链接1

[65] Balachandran U, Lee TH, Dorris SE. Hydrogen production by water dissociation using mixed conducting dense ceramic membranes. Int J Hydrogen Energy 2007;32(4):451–6. 链接1

[66] Nalbandian L, Evdou A, Zaspalis V. La1-xSrxMO3 (M = Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors. Int J Hydrogen Energy 2009;34(17):7162–72. 链接1

[67] Song S, Moon JH, Ryu HW, Lee TH, Dorris SE, Balachandran U. Non-galvanic hydrogen production by water splitting using cermet membranes. J Ceram Process Res 2008;9(2):123–5. 链接1

[68] Evdou A, Nalbandian L, Zaspalis VT. Perovskite membrane reactor for continuous and isothermal redox hydrogen production from the dissociation of water. J Membr Sci 2008;325(2):704–11. 链接1

[69] Itoh N, Sanchez MA, Xu WC, Haraya K, Hongo M. Application of a membrane reactor system to thermal-decomposition of CO2. J Membr Sci 1993;77(2– 3):245–53. 链接1

[70] Jin W, Zhang C, Chang X, Fan Y, Xing W, Xu N. Efficient catalytic decomposition of CO2 to CO and O2 over Pd/mixed-conducting oxide catalyst in an oxygen-permeable membrane reactor. Environ Sci Technol 2008;42(8):3064–8. 链接1

[71] Jiang H, Wang H, Liang F, Werth S, Schiestel T, Caro J. Direct decomposition of nitrous oxide to nitrogen by in situ oxygen removal with a perovskite membrane. Angew Chem Int Ed Engl 2009;48(16):2983–6. 链接1

[72] Franca RV, Thursfield A, Metcalfe IS. La0.6Sr0.4Co0.2Fe0.8O3d microtubular membranes for hydrogen production from water splitting. J Membr Sci 2012;389:173–81. 链接1

[73] Zhang K, Zhang G, Liu Z, Zhu J, Zhu N, Jin W. Enhanced stability of membrane reactor for thermal decomposition of CO2 via porous-dense-porous triplelayer composite membrane. J Membr Sci 2014;471:9–15. 链接1

[74] Liang W, Megarajan SK, Liang F, Zhang Y, He G, Liu Z, et al. Coupling of N2O decomposition with CO2 reforming of CH4 in novel cobalt-free BaFe0.9Zr0.05Al0.05O3-d oxygen transport membrane reactor. Chem Eng J 2016;305:176–81. 链接1

[75] Jiang H, Wang H, Liang F, Werth S, Schirrmeister S, Schiestel T, et al. Improved water dissociation and nitrous oxide decomposition by in situ oxygen removal in perovskite catalytic membrane reactor. Catal Today 2010;156 (3–4):187–90. 链接1

[76] Jiang W, Zhang G, Liu Z, Zhang K, Jin W. A novel porous-dense dual-layer composite membrane reactor with long-term stability. AIChE J 2013;59 (11):4355–63. 链接1

[77] Zhang C, Chang X, Dong X, Jin W, Xu N. The oxidative stream reforming of methane to syngas in a thin tubular mixed-conducting membrane reactor. J Membr Sci 2008;320(1–2):401–6. 链接1

[78] Zhu N, Dong X, Liu Z, Zhang G, Jin W, Xu N. Toward highly-effective and sustainable hydrogen production: bio-ethanol oxidative steam reforming coupled with water splitting in a thin tubular membrane reactor. Chem Commun (Camb) 2012;48(57):7137–9. 链接1

[79] Zhang C, Jin W, Yang C, Xu N. Decomposition of CO2 coupled with POM in a thin tubular oxygen-permeable membrane reactor. Catal Today 2009;148(3– 4):298–302. 链接1

[80] Zhang C, Chang X, Fan Y, Jin W, Xu N. Improving performance of a dense membrane reactor for thermal decomposition of CO2 via surface modification. Ind Eng Chem Res 2007;46(7):2000–5. 链接1

[81] Jin W, Zhang C, Zhang P, Fan Y, Xu N. Thermal decomposition of carbon dioxide coupled with POM in a membrane reactor. AIChE J 2006;52 (7):2545–50. 链接1

[82] Zhu J, Liu G, Liu Z, Chu Z, Jin W, Xu N. Unprecedented perovskite oxyfluoride membranes with high-efficiency oxygen ion transport paths for lowtemperature oxygen permeation. Adv Mater 2016;28(18):3511–5. 链接1

[83] Zhu J, Zhang G, Liu G, Liu Z, Jin W, Xu N. Perovskite hollow fibers with precisely controlled cation stoichiometry via one-step thermal processing. Adv Mater 2017;29(18). Epub 2017 Mar 6. 链接1

[84] Zou Y, Jiang H, Liu Y, Gao H, Xing W, Chen R. Highly efficient synthesis of cumene via benzene isopropylation over nano-sized beta zeolite in a submerged ceramic membrane reactor. Separ Purif Tech 2016;170:49–56. 链接1

[85] Zou Y, Jiang H, Gao H, Chen R. Efficient recovery of ultrafine catalysts from oil/ water/solid three-phase system by ceramic microfiltration membrane.Korean J Chem Eng 2016;33(8):2453–9. 链接1

[86] Jiang H, Jiang X, She F, Wang Y, Xing W, Chen R. Insights into membrane fouling of a side-stream ceramic membrane reactor for phenol hydroxylation over ultrafine TS-1. Chem Eng J 2014;239:373–80. 链接1

[87] Mao H, Chen R, Xing W, Jin W. Organic solvent-free process for cyclohexanone ammoximation by a ceramic membrane distributor. Chem Eng Technol 2016;39(5):883–90. 链接1

[88] Jiang X, She F, Jiang H, Chen R, Xing W, Jin W. Continuous phenol hydroxylation over ultrafine TS-1 in a side-stream ceramic membrane reactor. Korean J Chem Eng 2013;30(4):852–9. 链接1

[89] Fane AG. Submerged membranes. In: Li NN, Fan AG, Winston Ho WS, Matsuura T, editors. Advanced membrane technology and applications. New Jersey: John Wiley & Sons, Inc.; 2008. p. 239–70.

[90] Zhong Z, Xing W, Jin W, Xu N. Adhesion of nanosized nickel catalysts in the nanocatalysis/UF system. AIChE J 2007;53(5):1204–10. 链接1

[91] Chen R, Du Y, Wang Q, Xing W, Jin W, Xu N. Effect of catalyst morphology on the performance of submerged nanocatalysis/membrane filtration system. Ind Eng Chem Res 2009;48(14):6600–7. 链接1

[92] Jiang H, Meng L, Chen R, Jin W, Xing W, Xu N. A novel dual-membrane reactor for continuous heterogeneous oxidation catalysis. Ind Eng Chem Res 2011;50 (18):10458–64. 链接1

[93] Chen R, Bao Y, Xing W, Jin W, Xu N. Enhanced phenol hydroxylation with oxygen using a ceramic membrane distributor. Chin J Catal 2013;34 (1):200–8. 链接1

[94] Chen R, Mao H, Zhang X, Xing W, Fan Y. A dual-membrane airlift reactor for cyclohexanone ammoximation over titanium silicalite-1. Ind Eng Chem Res 2014;53(15):6372–9. 链接1

[95] Xu N, Li W, Zhao Y, Xing W, Shi J. Theory and method of application-oriented ceramic membranes design (I). J Chem Ind Eng 2003;54(9):1284–9.

[96] Wells DH Jr, Delgass WN Jr, Thomson KT. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: a DFT study. J Am Chem Soc 2004;126(9):2956–62. 链接1

[97] Shetti VN, Srinivas D, Ratnasamy P. Enhancement of chemoselectivity in epoxidation reactions over TS-1 catalysts by alkali and alkaline metal ions. J Mol Catal A-Chem 2004;210(1–2):171–8. 链接1

[98] Lu C, Chen R, Xing W, Jin W, Xu N. A submerged membrane reactor for continuous phenol hydroxylation over TS-1. AIChE J 2008;54(7):1842–9. 链接1

[99] Meng L, Guo H, Dong Z, Jiang H, Xing W, Jin W. Ceramic hollow fiber membrane distributor for heterogeneous catalysis: effects of membrane structure and operating conditions. Chem Eng J 2013;223:356–63. 链接1

[100] Li W, Zhao Y, Liu F, Xing W, Xu N, Shi J. Theory and method of applicationoriented ceramic membranes design (II). J Chem Ind Eng 2003;54(9):1290–4.

[101] Zhong Z, Li W, Xing W, Xu N. Crossflow filtration of nanosized catalysts suspension using ceramic membranes. Separ Purif Tech 2011;76(3):223–30. 链接1

[102] Chen R, Jiang Y, Xing W, Jin W. Fabrication and catalytic properties of palladium nanoparticles deposited on a silanized asymmetric ceramic support. Ind Eng Chem Res 2011;50(8):4405–11. 链接1

[103] Chen R, Jiang Y, Xing W, Jin W. Preparation of palladium nanoparticles deposited on a silanized hollow fiber ceramic membrane support and their catalytic properties. Ind Eng Chem Res 2013;52(14):5002–8. 链接1

[104] Li H, Jiang H, Chen R, Wang Y, Xing W. Enhanced catalytic properties of palladium nanoparticles deposited on a silanized ceramic membrane support with a flow-through method. Ind Eng Chem Res 2013;52(39):14099–106. 链接1

[105] Xu J, Bhattacharyya D. Modeling of Fe/Pd nanoparticle-based functionalized membrane reactor for PCB dechlorination at room temperature. J Phys Chem C 2008;112(25):9133–44. 链接1

[106] Ouyang L, Dotzauer DM, Hogg SR, Macanas J, Lahitte JF, Bruening ML. Catalytic hollow fiber membranes prepared using layer-by-layer adsorption of polyelectrolytes and metal nanoparticles. Catal Today 2010;156(3– 4):100–6. 链接1

[107] Dotzauer DM, Abusaloua A, Miachon S, Dalmon JA, Bruening ML. Wet air oxidation with tubular ceramic membranes modified with polyelectrolyte/Pt nanoparticle films. Appl Catal B 2009;91(1–2):180–8. 链接1

[108] Wiley DE, Fletcher DF. Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes. Desalination 2002;145 (1–3):183–6. 链接1

[109] Rahimi M, Madaeni SS, Abbasi K. CFD modeling of permeate flux in cross-flow microfiltration membrane. J Membr Sci 2005;255(1–2):23–31. 链接1

[110] Ghidossi R, Veyret D, Moulin P. Computational fluid dynamics applied to membranes: state of the art and opportunities. Chem Eng Process 2006;45 (6):437–54. 链接1

[111] Coroneo M, Montante G, Catalano J, Paglianti A. Modelling the effect of operating conditions on hydrodynamics and mass transfer in a Pd-Ag membrane module for H2 purification. J Membr Sci 2009;343(1–2):34–41. 链接1

[112] Brannock M, De Wever H, Wang Y, Leslie G. Computational fluid dynamics simulations of MBRs: inside submerged versus outside submerged membranes. Desalination 2009;236(1–3):244–51. 链接1

[113] Brannock M, Leslie G, Wang Y, Buetehorn S. Optimising mixing and nutrient removal in membrane bioreactors: CFD modelling and experimental validation. Desalination 2010;250(2):815–8. 链接1

[114] Meng L, Cheng J, Jiang H, Yang C, Xing W, Jin W. Design and analysis of a submerged membrane reactor by CFD simulation. Chem Eng Technol 2013;36(11):1874–82. 链接1

相关研究