期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2018年 第4卷 第6期 doi: 10.1016/j.eng.2018.11.001

分子电子学的发展

a Center of Micro/Nano Manufacturing Technology (MNMT-Dublin), University College Dublin, Dublin D04 V1W8, Ireland

b Center of Micro/Nano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, China

收稿日期: 2018-07-03 修回日期: 2018-10-16 录用日期: 2018-11-01 发布日期: 2018-11-09

下一篇 上一篇

摘要

分子电子学(moletronics)是用分子作为单元对分子电子学器件进行装配。这是一个包含物理、化学、材料科学及工程等学科的多学科交叉领域。分子电子学致力于使硅元件尺寸进一步减小。科学家已经在等效分子器件方面进行了诸多探索性研究。分子电子学在电子以及光子应用中逐渐产生影响,如导电聚合物、光色材料、有机超导体、电致变色材料等。为了满足减小硅片尺寸的需求,研究人员有必要将这种新型技术引入到分子层面。虽然分子层面仪器的实验验证和建模分析是一项艰巨的任务,但分子电子学领域依然出现了突破性进展。本文将对不同分子器件和潜在的适用于不同器件的分子应用结合起来进行讨论,如分子晶体管、分子二极管、分子电容、分子导线和分子绝缘体等。本文简要讨论未来的发展趋势以及介绍各种基于石墨烯已取得一定研究成果的分子仪器。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

参考文献

[ 1 ] Marcus RA. Electron transfer reactions in chemistry: theory and experiment (nobel lecture). Rev Mod Physics 1993;65:599–610. 链接1

[ 2 ] Ratner M. A brief history of molecular electronics. Nat Nanotechnol 2013;8:378–81. 链接1

[ 3 ] Heath JR, Ratner MA. Molecular electronics. Phys Today 2003:43–9.

[ 4 ] Lee T, Wang W, Reed MA. Mechanism of electron conduction in selfassembled alkanethiol monolayer devices. Phys Rev B 2003;68:21–35. 链接1

[ 5 ] Metzger RM, Chen B, Höpfner U, Lakshmikantham MV, Vuillaume D, Kawai T, et al. Unimolecular electrical rectification in hexadecylquinolinium tricyanoquinodimethanide. J Am Chem Soc 1997;119:10455–66. 链接1

[ 6 ] McCreery RL. Molecular electronic junctions. Chem Mater 2004;16:4477–96.

[ 7 ] Yaliraki SN, Kemp M, Ratner MA. Conductance of molecular wires: influence of molecule-electrode binding. J Am Chem Soc 1999;121:3428–34. 链接1

[ 8 ] Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev 1957;1:223–31.

[ 9 ] Maassen J, Lundstrom M. The Landauer approach to electron and phonon transport. ECS Trans 2015;69:23–36. 链接1

[10] Kim R, Datta S, Lundstrom MS. Influence of dimensionality on thermoelectric device performance. J Appl Phys 2009;105. 链接1

[11] Majumdar A. Microscale heat conduction in dielectric thin films. J Heat Transfer 1993;115(1):7–16. 链接1

[12] Scheidemantel TJ, Ambrosch-Draxl C, Thonhauser T, Badding JV, Sofo JO. Transport coefficients from first-principles calculations. Phys Rev B 2003;68:125210. 链接1

[13] Roger L, Datta S. Nonequilibrium Green’s-function method applied to doublebarrier resonant-tunneling diodes. Phys Rev B 1992;45:6670–85. 链接1

[14] Koswatta SO, Hasan S, Lundstrom MS, Anantram MP, Nikonov DE. Nonequilibrium Green’s function treatment of phonon scattering in carbonnanotube transistors. IEEE Trans Electron Devices 2007;54:2339–51. 链接1

[15] Whitesides GM, Boncheva M. Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acad Sci 2002;99:4769–74. 链接1

[16] Vericat C, Vela ME, Benitez G, Carro P, Salvarezza RC. Self-assembled monolayers of thiols and dithiols on gold: new challenges for a well-known system. Chem Soc Rev 2010;39:1805. 链接1

[17] Kushmerick J. Molecular transistors scrutinized. Nature 2009;462:994–5. 链接1

[18] Ellenbogen JC, Love JC. Architectures for molecular electronic computers: 1. Logic structures and an adder designed from molecular electronic diodes. Proc IEEE 2000;88:386–426. 链接1

[19] Yu H, Luo Y, Beverly K, Stoddart JF, Tseng HR, Heath JR. The moleculeelectrode interface in single-molecule transistors. Angew Chem 2003;42:5706–11. 链接1

[20] Ghosh AW, Rakshit T, Datta S. Gating of a molecular transistor: electrostatic and conformational. Nano Lett 2004;4:565–8. 链接1

[21] Ahn CH, Bhattacharya A, Di Ventra M, Eckstein JN, Frisbie CD, Gershenson ME, et al. Electrostatic modification of novel materials. Rev Mod Phys 2006;78:1185–212. 链接1

[22] Jin C, Solomon GC. Controlling band alignment in molecular junctions: utilizing two-dimensional transition-metal dichalcogenides as electrodes for thermoelectric devices. J Phys Chem C 2018;122:14233–9. 链接1

[23] Flood AH, Stoddart JF, Steuerman DW, Heath JR. Whence molecular electronics? Science 2004;306:2055–6. 链接1

[24] Chen Y, Jung GY, Ohlberg DAA, Li X, Stewart DR, Jeppesen JO, et al. Nanoscale molecular-switch crossbar circuits. Nanotechnology 2003;14:462–8. 链接1

[25] Long B, Nikitin K, Fitzmaurice D. Assembly of an electronically switchable rotaxane on the surface of a titanium dioxide nanoparticle. J Am Chem Soc 2003;125:15490–8. 链接1

[26] Zhu K, Baggi G, Loeb SJ. Ring-through-ring molecular shuttling in a saturated [3]rotaxane. Nat Chem 2018;10:625–30. 链接1

[27] Papadopoulos TA, Grace IM, Lambert CJ. Control of electron transport through Fano resonances in molecular wires. Phys Rev B 2006;74:193306. 链接1

[28] Reed MA, Zhou C, Muller CJ, Burgin TP, Tour JM. Conductance of a molecular junction. Science 1997;278:252–4. 链接1

[29] Joachim C, Gimzewski JK, Schlittler RR, Chavy C. Electronic transparence of a single C60 molecule. Phys Rev Lett 1995;74:2102–5. 链接1

[30] Eigler DM, Schweizer EK. Positioning single atoms with a scanning tunneling microscope. Nature 1990;344:524–6. 链接1

[31] Sotthewes K, Geskin V, Heimbuch R, Kumar A, Zandvliet HJW. Research update: molecular electronics: the single-molecule switch and transistor. APL Mater 2014;2:010701. 链接1

[32] Joachim C, Gimzewski JK, Schlittler RR, Chavy C. Electronic transparence of a single C60 molecule. Phys Rev Lett 1995;74(11):2102–5. 链接1

[33] Xu B, Gonella G, Delacy BG, Dai HL. Adsorption of anionic thiols on silver nanoparticles. J Phys Chem C 2015;119(10):5454–61. 链接1

[34] Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P. Carbon nanotubes as schottky barrier transistors. Phys Rev Lett 2002;89(10):106801. 链接1

[35] Javey A, Guo J, Wang Q, Lundstrom M, Dai H. Ballistic carbon nanotube fieldeffect transistors. Nature 2003;424(6949):654–7. 链接1

[36] Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T. Electrical conductivity of individual carbon nanotubes. Nature 1996;382(6586):54–6. 链接1

[37] Durrani ZAK. Coulomb blockade, single-electron transistors and circuits in silicon. Physica E 2003;17:572–8. 链接1

[38] Averin DV, Likharev KK. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. J Low Temp Phys 1986;62(3–4):345–73. 链接1

[39] Takahashi N, Ishikuro H, Hiramoto T. Control of Coulomb blockade oscillations in silicon single electron transistors using silicon nanocrystal floating gates. Appl Phys Lett 2000;76(2):209–11. 链接1

[40] Ali D, Ahmed H. Coulomb blockade in a silicon tunnel junction device. Appl Phys Lett 1994;64(16):2119–20. 链接1

[41] Sols F, Guinea F, Neto AHC. Coulomb blockade in graphene nanoribbons. Phys Rev Lett 2007;166803:25–7. 链接1

[42] Liang W, Shores MP, Bockrath M, Long JR, Park H. Kondo resonance in a single-molecule transistor. Nature 2002;417(6890):725–8. 链接1

[43] Mitchell AK, Pedersen KGL, Hedegård P, Paaske J. Kondo blockade due to quantum interference in single-molecule junctions. Nat Commun 2017;8:15210. 链接1

[44] Park J, Pasupathy AN, Jonas I, Goldsmith JI, Chang C, Yaish Y, et al. Coulomb blockade and the Kondo effect in single-atom transistors. Nature 2002;417 (6890):722–5. 链接1

[45] Kouwenhoven L, Glazman L. Revival of the Kondo effect. Phys World 2001;14 (1):33–8. 链接1

[46] Ke SH, Yang W, Baranger HU. Quantum-interference-controlled molecular electronics. Nano Lett 2008;8(10):3257–61. 链接1

[47] Stafford CA, Cardamone DM, Mazumdar S. The quantum interference effect transistor. Nanotechnology 2007;18(42):424014. 链接1

[48] Guédon CM, Valkenier H, Markussen T, Thygesen KS, Hummelen JC, Van Der Molen SJ. Observation of quantum interference in molecular charge transport. Nat Nanotechnol 2012;7(5):305–9. 链接1

[49] Chen S, Zhou W, Zhang Q, Kwok Y, Chen G, Ratner MA. Can molecular quantum interference effect transistors survive. J Phys Chem 2017;8:5166–70. 链接1

[50] Aviram A, Ratner MA. Molecular rectifiers. Chem Phys Lett 1974;29 (2):277–83.

[51] Roland P, Aviram A. The effect of electric fields on double-well-potential molecules. Ann New York Acad Sci 2006:339–48. 链接1

[52] Ng MK, Lee DC, Yu L. Molecular diodes based on conjugated diblock cooligomers. J Am Chem Soc 2002;124(40):11862–3. 链接1

[53] Liu R, Ke SH, Yang W, Baranger HU. Organometallic molecular rectification. J Chem Phys 2006;124(2):1–6. 链接1

[54] Kornilovitch PE, Bratkovsky AM, Stanley Williams R. Current rectification by molecules with asymmetric tunneling barriers. Phys Rev B Condens Matter Mater Phys 2002;66(16):1–11. 链接1

[55] Nijhuis CA, Reus WF, Whitesides GM. Mechanism of rectification in tunneling junctions based on molecules with asymmetric potential drops. J Am Chem Soc 2010;132(51):18386–401. 链接1

[56] Armstrong N, Hoft RC, McDonagh A, Cortie MB, Ford MJ. Exploring the performance of molecular rectifiers: limitations and factors affecting molecular rectification. Nano Lett 2007;7(10):3018–22. 链接1

[57] Metzger RM. Electrical rectification by a molecule: the advent of unimolecular electronic devices. Acc Chem Res 1999;32(11):950–7. 链接1

[58] Metzger RM. Quo vadis, unimolecular electronics? Nanoscale 2018;10 (22):10316–32. 链接1

[59] Martin AS, Sambles JR, Ashwell GJ. Molecular rectifier. Phys Rev Lett 1993;70 (2):218–21.

[60] Lenfant S, Krzeminski C, Delerue C, Allan G, Vuillaume D. Molecular rectifying diodes from self-assembly on silicon. Nano Lett 2003;3(6):741–6. 链接1

[61] Vilan A, Shanzer A, Cahen D. Molecular control over Au/GaAs diodes. Nature 2000;404(6774):166–8. 链接1

[62] Brown ER, Parker CD, Mahoney LJ, Molvar KM. Oscillations up to 712 GHz in InAs/AISb diodes. Society 1991;58:2291–3. 链接1

[63] Sun JP, Haddad GI, Mazumder P, Schulman JN. Resonant tunneling diodes: models and properties. Proc IEEE 1998;86(4):641–60. 链接1

[64] Ellenbogen JC, inventor. Monomolecular electronic device. United States patent US 6339227. 2002 Jan 15.

[65] Tsu R, inventor; Tsu R, assignee. Quantum well structures useful for semiconductor devices. United States patent US5216262A. 1993 Jun 1. 链接1

[66] Seminario JM, Zacarias AG, Tour JM. Theoretical study of a molecular resonant tunneling diode. J Am Chem Soc 2000;122(13):3015–20. 链接1

[67] Chen J, Reed MA, Rawlett AM, Tour JM. Large on-off ratios and negative differential resistance in a molecular electronic device. Science 1999;286 (5444):1550–1. 链接1

[68] Lake R, Alam K, Burque NA, Pandey R, inventors; The Regents of the University of California, assignee. Molecular resonant tunneling diode. United States patent US20080035913A1. 2008 Feb 14. 链接1

[69] Campbell I, Rubin S, Zawodzinski T, Kress J, Martin R, Smith D, et al. Controlling Schottky energy barriers in organic electronic devices using selfassembled monolayers. Phys Rev B Condens Matter 1996;54(20):R14321–4. 链接1

[70] Ellenbogen JC. A brief overview of nanoelectronic devices. In: Proceedings of the 1998 Government Microelectronics Applications Conference; 1998 Mar 13–16; Arlington, TX, USA; 1998.

[71] Goldhaber-Gordon D, Montemerlo MS, Love JC, Opiteck GJ, Ellenbogen JC. Overview of nanoelectronic devices. Proc IEEE 1997;85:521–40. 链接1

[72] Dragoman D, Dragoman M. Terahertz oscillations in semiconducting carbon nanotube resonant-tunneling diodes. Physica E 2004;24:282–9. 链接1

[73] Pandey RR, Bruque N, Alam K, Lake RK. Carbon nanotube—molecular resonant tunneling diode. Phys Status Solidi 2006;203(2):R5–7. 链接1

[74] Bayram C, Vashaei Z, Razeghi M. AlN/GaN double-barrier resonant tunneling diodes grown by metal–organic chemical vapor deposition. Appl Phys Lett 2010;96(4):2–5. 链接1

[75] Lindsey JS, Bocian DF. Molecules for charge-based information storage. Acc Chem Res 2011;44(8):638–50. 链接1

[76] Kuhr WG, Gallo AR, Manning RW, Rhodine CW. Molecular memories based on a CMOS platform. MRS Bull 2004;29(11):838–42. 链接1

[77] Liu Z, Yasseri AA, Lindsey JS, Bocian DF. Molecular memories that survive silicon device processing and real-world operation. Science 2003;302 (5650):1543–5. 链接1

[78] Roth KM, Dontha N, Dabke RB, Gryko DT, Clausen C, Lindsey JS, et al. Molecular approach toward information storage based on the redox properties of porphyrins in self-assembled monolayers. J Vac Sci Technol B 2000;18(5):2359–64. 链接1

[79] Jurow M, Schuckman AE, Batteas JD, Drain CM. Porphyrins as molecular electronic components of functional devices. Coord Chem Rev 2010;254 (19–20):2297–310. 链接1

[80] Miller JR, Simon P. Electrochemical capacitors for energy management. Science 2008;321:651–2. 链接1

[81] Merlet C, Rotenberg B, Madden PA, Taberna PL, Simon P, Gogotsi Y, et al. On the molecular origin of supercapacitance in nanoporous carbon electrodes. Nat Mater 2012;11(4):306–10. 链接1

[82] Sharma P, Bhatti TS. A review on electrochemical double-layer capacitors. Energy Convers Manage 2010;51(12):2901–12. 链接1

[83] Largeot C, Portet C, Chmiola J, Taberna PL, Gogotsi Y, Simon P. Relation between the ion size and pore size for an electric double-layer capacitor. J Am Chem Soc 2008;130(9):2730–1. 链接1

[84] Chen Z, Lee B, Sarkar S, Gowda S, Misra V. A molecular memory device formed by HfO2 encapsulation of redox-active molecules. Appl Phys Lett 2007;91:1–4. [85] Chen G, Bandow S, Margine ER, Nisoli C, Kolmogorov AN, Crespi VH, et al. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett 2003;90:257403. 链接1

[85] Chen G, Bandow S, Margine ER, Nisoli C, Kolmogorov AN, Crespi VH, et al. Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett 2003;90:257403 链接1

[86] Madani MS, Monajjemi M, Aghaei H. The double wall boron nitride nanotube: nano-cylindrical capacitor. Orient J Chem 2017;33(3):1213–22. 链接1

[87] Jansen L. Molecular theory of the dielectric constant. Phys Rev 1958;112 (2):434–44. 链接1

[88] Kumar MJ. Molecular diodes and applications. Recent Pat Nanotechnol 2007;1:51–7. 链接1

[89] Fabrizio M, Tosatti E. Nonmagnetic molecular Jahn-Teller Mott insulators. Phys Rev B Condens Matter Mater Phys 1997;55(20):13465–72. 链接1

[90] Mayor M, Weber HB, Reichert J, Elbing M, Von Hänisch C, Beckmann D, et al. Electric current through a molecular rod-relevance of the position of the anchor groups. Angew Chem Int Ed 2003;42(47):5834–8. 链接1

[91] Garner MH, Li H, Chen Y, Su TA, Shangguan Z, Paley DW, et al. Comprehensive suppression of single-molecule conductance using destructive rinterference. Nature 2018;558(7710):416–9. 链接1

[92] Meunier M, Quirke N. Molecular modeling of electron trapping in polymer insulators. J Chem Phys 2000;113(1):369–76. 链接1

[93] Wannebroucq A, Gruntz G, Suisse JM, Nicolas Y, Meunier-Prest R, Mateos M, et al. New n-type molecular semiconductor-doped insulator (MSDI) heterojunctions combining a triphenodioxazine (TPDO) and the lutetium bisphthalocyanine (LuPc2) for ammonia sensing. Sens Actuators B Chem 2018;255:1694–700. 链接1

[94] Tao NJ. Electron transport in molecular junctions. Nat Nanotechnol 2006;1 (3):173–81. 链接1

[95] Salahuddin S, Lundstrom M, Datta S. Transport effects on signal propagation in quantum wires. IEEE Trans Electron Dev 2005;52(8):1734–42. 链接1

[96] Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE, Geerligs LJ, et al. Individual single-wall carbon nanotubes as quantum wires. Nature 1997;386 (6624):474–7. 链接1

[97] Wang X, Alexander-Webber JA, Jia W, Reid BPL, Stranks SD, Holmes MJ, et al. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes. Sci Rep 2016;6(1):6–11. 链接1

[98] Dresselhaus MS, Eklund PC. Phonons in carbon nanotubes. Adv Phys 2000;47 (6):705–814.

[99] Holmes JD, Johnston KP, Doty RC, Korgel BA. Control orientation of thickness and solution-grown nanowires silicon. Adv Sci 2010;287:1471–3.

[100] Cahill DG, Ford WK, Goodson KE, Mahan GD, Majumdar A, Maris HJ, et al. Nanoscale thermal transport. J Appl Phys 2003;93(2):793–818.

[101] Zou J, Balandin A. Phonon heat conduction in a semiconductor nanowire. J Appl Phys 2001;89(5):2932–8. 链接1

[102] Mingo N, Stewart DA, Broido DA, Srivastava D. Phonon transmission through defects in carbon nanotubes from first principles. Phys Rev B Condens Matter Mater Phys 2008;77(3):3–6. 链接1

[103] Krittayavathananon A, Ngamchuea K, Li X, Batchelor-McAuley C, Kätelhön E, Chaisiwamongkhol K, et al. Improving single-carbon-nanotube-electrode contacts using molecular electronics. J Phys Chem Lett 2017;8 (16):3908–11. 链接1

[104] Noori M, Sadeghi H, Lambert CJ. High-performance thermoelectricity in edgeover-edge zinc-porphyrin molecular wires. Nanoscale 2017;9(16):5299–304. 链接1

[105] Algethami N, Sadeghi H, Sangtarash S, Lambert CJ. The conductance of porphyrin-based molecular nanowires increases with length. Nano Lett 2018;18(7):4482–6. 链接1

[106] Cnossen A, Roche C, Anderson HL. Scavenger templates: a systems chemistry approach to the synthesis of porphyrin-based molecular wires. Chem Commun 2017;53(75):10410–3. 链接1

[107] Ratner MA, Davis B, Kemp M, Mujica V, Roitberg A, Yaliraki S. Molecular wires: charge transport, mechanisms, and control. Ann New York Acad Sci 1998;852:22–37. 链接1

[108] Wagner RW, Lindsey JS, Seth J, Palaniappan V, Bocian DF. Molecular optoelectronic gates. J Am Chem Soc 1996;118(16):3996–7. 链接1

[109] Mirkin CA, Ratner MA. Molecular electronics. Annu Rev Phys Chem 1992;43:719–54.

[110] Barbara PF, Meyer TJ, Ratner MA. Contemporary issues in electron transfer research. J Phys Chem 1996;100(31):13148–68. 链接1

[111] Sedghi G, Sawada K, Esdaile LJ, Hoffmann M, Anderson HL, Bethell D, et al. Single molecule conductance of porphyrin wires with ultralow attenuation. J Am Chem Soc 2008;130(27):8582–3. 链接1

[112] Koepf M, Trabolsi A, Elhabiri M, Wytko JA, Paul D, Albrecht-Gary AM, et al. Building blocks for self-assembled porphyrinic photonic wires. Org Lett 2005;7(7):1279–82. 链接1

[113] Iengo E, Zangrando E, Minatel R, Alessio E. Metallacycles of porphyrins as building blocks in the construction of higher order assemblies through axial coordination of bridging ligands: solution- and solid-state characterization of molecular sandwiches and molecular wires. J Am Chem Soc 2002;124 (6):1003–13. 链接1

[114] Ambroise A, Kirmaier C, Wagner RW, Loewe RS, Bocian DF, Holten D, et al. Weakly coupled molecular photonic wires: synthesis and excited-state energy-transfer dynamics. J Org Chem 2002;67(11):3811–26. 链接1

[115] Robertson N, McGowan CA. A comparison of potential molecular wires as components for molecular electronics. Chem Soc Rev 2003;32(2):96–103. 链接1

[116] Ozawa H, Kawao M, Tanaka H, Ogawa T. Synthesis of dendron-protected porphyrin wires and preparation of a one-dimensional assembly of gold nanoparticles chemically linked to the pi-conjugated wires. Langmuir 2007;23(11):6365–71. 链接1

[117] Linford MR, Chidsey CED, Fenter P, Eisenberger PM. Alkyl monolayers on silicon prepared from 1-alkenes and hydrogen-terminated silicon. J Am Chem Soc 1995;117(11):3145–55. 链接1

[118] Hobza P, Selzle HL, Schlag EW. Structure and properties of benzenecontaining molecular clusters: nonempirical ab initio calculations and experiments. Chem Rev 1994;94(7):1767–85. 链接1

[119] Cooper DL, Gerratt J, Raimondi M. The electronic structure of the benzene molecule. Nature 1986;323(6090):699–701. 链接1

[120] Kaliginedi V, Moreno-García P, Valkenier H, Hong W, García-Suárez VM, Buiter P, et al. Correlations between molecular structure and single-junction conductance: a case study with oligo(phenylene-ethynylene)-type wires. J Am Chem Soc 2012;134(11):5262–75. 链接1

[121] Stapleton JJ, Harder P, Daniel TA, Reinard MD, Yao Y, Price DW, et al. Selfassembled oligo(phenylene-ethynylene) molecular electronic switch monolayers on gold: structures and chemical stability. Langmuir 2003;19 (20):8245–55. 链接1

[122] Grozema FC, Candeias LP, Swart M, Van Duijnen PT, Wildeman J, Hadziioanou G, et al. Theoretical and experimental studies of the opto-electronic properties of positively charged oligo(phenylene vinylene)s: effects of chain length and alkoxy substitution. J Chem Phys 2002;117(24):11366–78. 链接1

[123] Mishra A, Ma C, Ba P, Oligothiophenes D. Functional oligothiophenes: molecular design for multidimensional nanoarchitectures and their applications. Chem Rev 2009;109(3):1141–276. 链接1

[124] Linton KE, Fox MA, Pålsson LO, Bryce MR. Oligo(p-phenyleneethynylene) (OPE) molecular wires: synthesis and length dependence of photoinduced charge transfer in OPEs with triarylamine and diaryloxadiazole end groups. Chemistry 2014;21(10):3997–4007. 链接1

[125] Thiele C, Gerhard L, Eaton TR, Torres DM, Mayor M, Wulfhekel W, et al. STM study of oligo(phenylene-ethynylene)s. New J Phys 2015;17(5):2–10. 链接1

[126] Cai L, Yao Y, Yang J, Price DW, Tour JM. Chemical and potential-assisted assembly of thiolacetyl-terminated oligo(phenylene ethynylene)s on gold surfaces. Chem Mater 2002;14(7):2905–9. 链接1

[127] Nuzzo RG, Allara DL. Adsorption of bifunctional organic disulfides on gold surfaces. J Am Chem Soc 1983;105(13):4481–3. 链接1

[128] Ulman A. Formation and structure of self-assembled monolayers. Chem Rev 1996;96(4):1533–54. 链接1

[129] Jenny NM, Mayor M, Eaton TR. Phenyl-acetylene bond assembly: a powerful tool for the construction of nanoscale architectures. Eur J Org Chem 2011;2011(26):4965–83. 链接1

[130] Kushmerick JJ, Pollack SK, Yang JC, Naciri J, Holt DB, Ratner MA, et al. Understanding charge transport in molecular electronics. Ann New York Acad Sci 2003;1006(1):277–90.

[131] Kushmerick JG, Holt DB, Pollack SK, Ratner MA, Yang JC, Schull TL, et al. Effect of bond-length alternation in molecular wires. J Am Chem Soc 2002;124 (36):10654–5. 链接1

[132] Rosenthal I. Phthalocyanines as photodynamic sensitizers. Photochem Photobiol 1991;53(6):859–70. 链接1

[133] Spikes JD. Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol 1986;43 (6):691–9. 链接1

[134] Saiki T, Mori S, Ohara K, Naito T. Capacitor-like behavior of molecular crystal b-Dicc[Ni(dmit)2]. Chem Lett 2014;43(7):1119–21. 链接1

[135] Rodríguez-Salcedo J, Vivas-Reyes R, Zapata-Rivera J. Characterization of charge transfer mechanisms in the molecular capacitor b-DiCC[Ni(dmit)2] using TD–DFT methods. Comput Theor Chem 2017;1109:36–41.

[136] Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998;391 (6669):775–8. 链接1

[137] Zhou YX, Johnson AT, Hone J, Smith WF. Simple fabrication of molecular circuits by shadow mask evaporation. Nano Lett 2003;3(10):1371–4. 链接1

[138] Fuchs JN, Goerbig MO. Introduction to the physical properties of grapheme [Internet]. 2008 [cited 2018 Oct 16]. Available from: https://www.equipes. lps.u-psud.fr/m2structure/m2pdfpracticals/2-Lecture%20on%20graphene.pdf.

[139] Dedkov Y, Voloshina E. Graphene growth and properties on metal substrates. J Phys Condens Matter 2015;27:303002. 链接1

[140] Georgantzinos SK, Giannopoulos GI, Anifantis NK. Numerical investigation of elastic mechanical properties of graphene structures. Mater Des 2010;31 (10):4646–54. 链接1

[141] Torres T. Graphene chemistry. Chem Soc Rev 2017;46(15):4385–6.

[142] Liu Y, Xie B, Zhang Z, Zheng Q, Xu Z. Mechanical properties of graphene papers. J Mech Phys Solids 2012;60(4):591–605. 链接1

[143] Wang G, Kim Y, Choe M, Kim TW, Lee T. A new approach for molecular electronic junctions with a multilayer graphene electrode. Adv Mater 2011;23(6):755–60. 链接1

[144] Liu J, Yin Z, Cao X, Zhao F, Lin A, Xie L, et al. Bulk heterojunction polymer memory devices with reduced graphene oxide as electrodes. ACS Nano 2010;4(7):3987–92. 链接1

[145] Di CA, Wei D, Yu G, Liu Y, Guo Y, Zhu D. Patterned graphene as source/drain electrodes for bottom-contact organic field-effect transistors. Adv Mater 2008;20(17):3289–93. 链接1

[146] Wang X, Zhi L, Müllen K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 2008;8(1):323–7. 链接1

[147] Supur M, Van Dyck C, Bergren AJ, McCreery RL. Bottom-up, robust graphene ribbon electronics in all-carbon molecular junctions. ACS Appl Mater Interfaces 2018;10(7):6090–5. 链接1

[148] Jeong I, Song H. Structural and charge transport properties of molecular tunneling junctions with single-layer graphene electrodes. J Korean Phys Soc 2018;72(3):394–9. 链接1

[149] Dou KP, Kaun CC, Zhang RQ. Selective interface transparency in graphene nanoribbon based molecular junctions. Nanoscale 2018;10(10):4861–4. 链接1

[150] Zhong Y, Kumar B, Oh S, Trinh MT, Wu Y, Elbert K, et al. Helical ribbons for molecular electronics. J Am Chem Soc 2014;136(22):8122–30. 链接1

[151] Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, et al. Ultra-narrow metallic armchair graphene nanoribbons. Nat Commun 2015;6 (1):1–6. 链接1

[152] Fang F. Atomic and close-to-atomic scale manufacturing—a trend in manufacturing development. Front Mech Eng 2016;4(4):325–7. 链接1

[153] Sharath Kumar J, Murmu NC, Kuila T. Recent trends in the graphene-based sensors for the detection of hydrogen peroxide. AIMS Mater Sci 2018;5 (3):422–66. 链接1

[154] Wang L, Wang L, Zhang L, Xiang D. Advance of mechanically controllable break junction for molecular electronics. Top Curr Chem 2017;375(3):1–42. 链接1

[155] Dubois V, Raja SN, Gehring P, Caneva S, van der Zant HSJ, Niklaus F, et al. Massively parallel fabrication of crack-defined gold break junctions featuring sub-3 nm gaps for molecular devices. Nat Commun 2018;9(1):3433. 链接1

[156] Vilan A, Aswal D, Cahen D. Large-area, ensemble molecular electronics: motivation and challenges. Chem Rev 2017;117(5):4248–86. 链接1

[157] Mishra A, Jagtap S. Moletronics. Int J Sci Eng Res 2016;7(2):25–8.

[158] Newton MD, Sutin N. Electron transfer reactions in condensed phases. Annu Rev Phys Chem 1984;35:437–80. 链接1

[159] Dutton PL, Prince RC, Tiede DM. Reaction center of photosynthetic bacteria. Photochem Photobiol 1978;28:939–49.

[160] Patil A, Saha D, Ganguly S. A quantum biomimetic electronic nose sensor. Sci Rep 2018;8(1):1–8. 链接1

[161] Dubi Y, Di Ventra M. Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev Mod Phys 2011;83(1):131–55. 链接1

[162] Cui L, Miao R, Wang K, Thompson D, Zotti LA, Cuevas JC, et al. Peltier cooling in molecular junctions. Nat Nanotechnol 2018;13(2):122–7. 链接1

[163] Wu Q, Sadeghi H, García-Suárez VM, Ferrer J, Lambert CJ. Thermoelectricity in vertical graphene-C60-graphene architectures. Sci Rep 2017;7:1–8. 链接1

[164] Gould P. Moletronics closes in on silicon. Mater Today 2005;8(7):56–60 链接1

相关研究