期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第2期 doi: 10.1016/j.eng.2018.11.030

基于计算机视觉的民用基础设施的检查与监测研究进展

a Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2352, USA

b Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801-2302, USA

收稿日期 :2018-08-02 修回日期 :2018-10-13 录用日期 : 2018-11-14 发布日期 :2019-03-07

下一篇 上一篇

摘要

计算机视觉技术与远程摄像机和无人机(UAVs)的采集相结合,为民用基础设施状况评估提供了前景良好的非接触式解决方案。这种系统的最终目标是自动且稳健地将图像或视频数据转换为可操作的信息。本文概述了将计算机视觉技术应用于民用基础设施状态评估的最新进展。特别介绍了计算机视觉、机器学习和结构工程领域的相关研究。评估工作分为两类:检查应用和监测应用。检查应用包括识别环境,如结构构件,表征局部和全部的可见损坏,以及检测参考图像的变化。监测应用包括应变和位移的静态测量,以及模态分析的位移动态测量。最后,文章指出了为实现基于自动化视觉的民用基础设施和监测目标而持续存在的一些关键挑战,以及为解决这些挑战而正在进行的工作。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

图19

图20

图21

图22

图23

图24

图25

图26

图27

图28

参考文献

[1]  ASCE’s 2017 infrastructure report card: bridges [Internet]. Reston: American Society of Civil Engineers; 2017 [cited 2017 Oct 11]. Available from: https:// www.infrastructurereportcard.org/cat-item/bridges/.

[2]  R. P. Gallagher Associates, Inc. ATC-20-1 Field manual: postearthquake safety evaluation of buildings (second edition). Redwood City: Applied Technology Council; 2005. 链接1

[3]  Federal Highway Administration, Department of Transportation. National bridge inspection standards. Fed Regist [Internet] 2004 Dec [cited 2018 Jul 30];69(239):74419–39. Available from: https://www.govinfo.gov/content/ pkg/FR-2004-12-14/pdf/04-27355.pdf.

[4]  Corps of Engineers inspection team goes to new heights. Washington, DC: US Army Corps of Engineers; 2012.

[5]  Ou J, Li H. Structural health monitoring in mainland China: review and future trends. Struct Health Monit 2010;9(3):219–31. 链接1

[6]  Carden EP, Fanning P. Vibration based condition monitoring: a review. Struct Health Monit 2004;3(4):355–77. 链接1

[7]  Brownjohn JMW. Structural health monitoring of civil infrastructure. Philos Trans A Math Phys Eng Sci 1851;2007(365):589–622. 链接1

[8]  Li HN, Ren L, Jia ZG, Yi TH, Li DS. State-of-the-art in structural health monitoring of large and complex civil infrastructures. J Civ Struct Heal Monit 2016;6(1):3–16. 链接1

[9]  Roberts LG. Machine perception of three-dimensional solids [dissertation]. Cambridge: Massachusetts Institute of Technology; 1963. 链接1

[10]  Postal mechanization and early automation [Internet]. Washington, DC: United States Postal Service; 1956 [cited 2018 Jun 22]. Available from: https://about.usps.com/publications/pub100/pub100_042.htm.

[11]  Szeliski R. Computer vision: algorithms and applications. London: Springer; 2011. 链接1

[12]  Viola P, Jones MJ. Robust real-time face detection. Int J Comput Vis 2004;57 (2):137–54. 链接1

[13]  Turk MA, Pentland AP. Face recognition using eigenfaces. In: Proceedings of 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 1991 Jun 3–6; Maui, HI, USA. Piscataway: IEEE; 1991. p. 586–91. 链接1

[14]  Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2005 Jun 20–25; San Diego, CA, USA. Piscataway: IEEE; 2005. p. 886–93. 链接1

[15]  Pingali G, Opalach A, Jean Y. Ball tracking and virtual replays for innovative tennis broadcasts. In: Proceedings of the 15th International Conference on Pattern Recognition; 2000 Sep 3–7; Barcelona, Spain. Piscataway: IEEE; 2000. p. 152–6. 链接1

[16]  Bishop CM. Pattern recognition and machine learning. New York City: Springer-Verlag; 2006. 链接1

[17]  Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Gordon G, Dunson D, Dudík M, editors. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics; 2011 Apr 11–13; Fort Lauderdale, FL, USA; 2011. p. 315–23. 链接1

[18]  Rumelhart DE, Hinton GE, Williams RJ. Learning representations by backpropagating errors. Nature 1986;323(6088):533–6. 链接1

[19]  Kingma DP, Ba J. Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations; 2015 May 7–9; San Diego, CA, USA; 2015. p. 1–15. 链接1

[20]  LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE 1998;86(11):2278–324. 链接1

[21]  Wu S, Zhong S, Liu Y. Deep residual learning for image steganalysis. Multimed Tools Appl 2018;77(9):10437–53. 链接1

[22]  Karpathy A. t-SNE visualization of CNN codes [Internet]. [cited 2018 Jul 27]. Available from: https://cs.stanford.edu/people/karpathy/cnnembed/.

[23]  Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition; 2015 Jun 7–12; Boston, MA, USA. Piscataway: IEEE; 2015. p. 3431–40. 链接1

[24]  Farabet C, Couprie C, Najman L, LeCun Y. Learning hierarchical features for scene labeling. IEEE Trans Pattern Anal Mach Intell 2013;35(8):1915–29. 链接1

[25]  Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell 2017;39(12):2481–95. 链接1

[26]  Couprie C, Farabet C, Najman L, LeCun Y. Indoor semantic segmentation using depth information. arXiv:1301.3572. 2013.

[27]  He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors. Computer vision—ECCV 2014. Cham: Springer; 2014. p. 346–61. 链接1

[28]  Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23–28; Columbus, OH, USA. Piscataway: IEEE; 2014. p. 580–7. 链接1

[29]  Girshick R. Fast R-CNN. In: Proceedings of 2015 IEEE International Conference on Computer Vision; 2015 Dec 7–13; Santiago, Chile. Piscataway: IEEE; 2015. p. 1440–8. 链接1

[30]  Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell 2017;39(6):1137–49. 链接1

[31]  Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, realtime object detection. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 779–88. 链接1

[32]  He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: Proceedings of 2017 IEEE International Conference on Computer Vision; 2017 Oct 22–29; Venice, Italy. Piscataway: IEEE; 2017. p. 2980–8. 链接1

[33]  De Brabandere B, Neven D, Van Gool L. Semantic instance segmentation with a discriminative loss function. arXiv:1708.02551. 2017.

[34]  Zhang Z, Schwing AG, Fidler S, Urtasun R. Monocular object instance segmentation and depth ordering with CNNs. arXiv:1505.03159. 2015.

[35]  Werbos PJ. Backpropagation through time: what it does and how to do it. Proc IEEE 1990;78(10):1550–60. 链接1

[36]  Perazzi F, Khoreva A, Benenson R, Schiele B, Sorkine-Hornung A. Learning video object segmentation from static images. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA. Piscataway: IEEE; 2017. p. 2663–72. 链接1

[37]  Nilsson D, Sminchisescu C. Semantic video segmentation by gated recurrent flow propagation. arXiv:1612.08871. 2016.

[38]  Labelme.csail.mit.edu [Interent]. Cambridge: MIT Computer Science and Artificial Intelligence Laboratory; [cited 2018 Aug 1]. Available from: http:// labelme.csail.mit.edu/Release3.0/.

[39]  Hess MR, Petrovic V, Kuester F. Interactive classification of construction materials: feedback driven framework for annotation and analysis of 3D point clouds. In: Hayes J, Ouimet C, Santana Quintero M, Fai S, Smith L, editors. Proceedings of ICOMOS/ISPRS International Scientific Committee on Heritage Documentation (volume XLII-2/W5); 2017 Aug 28–Sep 1; Ottawa, ON, Canada; 2017. p. 343–7. 链接1

[40]  Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A. Learning deep features for discriminative localization. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 2921–9. 链接1

[41]  Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of 2017 IEEE International Conference on Computer Vision; 2017 Oct 22–29; Venice, Italy. Piscataway: IEEE; 2017. p. 618–26. 链接1

[42]  DeGol J, Golparvar-Fard M, Hoiem D. Geometry-informed material recognition. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 1554–62. 链接1

[43]  Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput 2002;14(8):1771–800. 链接1

[44]  Salakhutdinov R, Larochelle H. Efficient learning of deep Boltzmann machines. In: Teh YW, Titterington M, editors. Proceedings of the 13th International Conference on Artificial Intelligence and Statistics; 2010 May 13–15; Sardinia, Italy; 2010. p. 693–700. 链接1

[45]  Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science 2006;313(5786):504–7. 链接1

[46]  Pathak D, Krähenbühl P, Donahue J, Darrell T, Efros AA. Context encoders: feature learning by inpainting. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 2536–44. 链接1

[47]  Zhang R, Isola P, Efros AA. Split-brain autoencoders: unsupervised learning by cross-channel prediction. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017 Jul 21–26; Honolulu, HI, USA. Piscataway: IEEE; 2017. p. 645–54. 链接1

[48]  Radford A, Metz L, Chintala S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434. 2015.

[49]  Denton E, Chintala S, Szlam A, Fergus R. Deep generative image models using a Laplacian pyramid of adversarial networks. In: Proceedings of the 28th International Conference on Neural Information Processing Systems: volume 1; 2015 Dec 7–12; Montreal, QC, Canada. Cambridge: MIT Press; 2015. p. 1486–94. 链接1

[50]  Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X. Improved techniques for training GANs. In: Proceedings of the 30th International Conference on Neural Information Processing Systems; 2016 Dec 5–10; Barcelona, Spain. New York City: Curran Associates Inc.; 2016. p. 2234–42. 链接1

[51]  LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521(7553):436–44. 链接1

[52]  Barron JL, Fleet DJ, Beauchemin SS. Performance of optical flow techniques. Int J Comput Vis 1994;12(1):43–77. 链接1

[53]  Richardson IEG. H.264 and MPEG-4 video compression: video coding for next-generation multimedia. Chichester: John Wiley & Sons, Ltd.; 2003. 链接1

[54]  Grundmann M, Kwatra V, Han M, Essa I. Efficient hierarchical graph-based video segmentation. In: Proceedings of 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2010 Jun 13–18; San Francisco, CA, USA. Piscataway: IEEE; 2010. p. 2141–8. 链接1

[55]  Wadhwa N, Rubinstein M, Durand F, Freeman WT. Phase-based video motion processing. ACM Trans Graph 2013;32(4):80:1–9. 链接1

[56]  Engel J, Sturm J, Cremers D. Camera-based navigation of a low-cost quadrocopter. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems; 2012 Oct 7–12; Vilamoura, Portugal. Piscataway: IEEE; 2012. p. 2815–21. 链接1

[57]  Bojarski M, Del Testa D, Dworakowski D, Firner B, Flepp B, Goyal P, et al. End to end learning for self-driving cars. arXiv:1604.07316v1. 2016.

[58]  Goodfellow IJ, Bulatov Y, Ibarz J, Arnoud S, Shet V. Multi-digit number recognition from street view imagery using deep convolutional neural networks. arXiv:1312.6082v4. 2014.

[59]  Templeton B, inventor; Google LLC, Waymo LLC, assignees. Methods and systems for transportation to destinations by a self-driving vehicle. United States Patent US 9665101B1. 2017 May 30.

[60]  Taigman Y, Yang M, Ranzato MA, Wolf L. DeepFace: closing the gap to humanlevel performance in face verification. In: Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23–28; Columbus, OH, USA. Piscataway: IEEE; 2014. p. 1701–8. 链接1

[61]   Airport’s facial recognition technology catches 2 people attempting to enter US illegally [Internet]. New York City: FOX News Network, LLC.; 2018 Sep 12 [cited 2018 Sep 25]. Available from: http://www.foxnews.com/travel/2018/ 09/12/airports-facial-recognition-technology-catches-2-people-attemptingto-enter-us-illegally.html.

[62]  Wojna Z, Gorban AN, Lee DS, Murphy K, Yu Q, Li Y, et al. Attention-based extraction of structured information from street view imagery. In: Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition: volume 1; 2017 Nov 9–15; Kyoto, Japan. Piscataway: IEEE; 2018. p. 844–50. 链接1

[63]  Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Med Image Anal 2017;42:60–88. 链接1

[64]  Zink J, Lovelace B. Unmanned aerial vehicle bridge inspection demonstration project: final report. St. Paul: Minnesota Department of Transportation; 2015 Jul. Report No.: MN/RC 2015-40.

[65]  Wells J, Lovelace B. Unmanned aircraft system bridge inspection demonstration project phase II: final report. St. Paul: Minnesota Department of Transportation; 2017 Jun. Report No.: MN/RC 2017-18.

[66]  Otero LD, Gagliardo N, Dalli D, Huang WH, Cosentino P. Proof of concept for using unmanned aerial vehicles for high mast pole and bridge inspections: final report. Tallahassee: Florida Department of Transportation; 2015 Jun. Contract No.: BDV28 TWO 977-02.

[67]  Tomiczek AP, Bridge JA, Ifju PG, Whitley TJ, Tripp CS, Ortega AE, et al. Small unmanned aerial vehicle (sUAV) inspections in GPS denied area beneath bridges. In: Soules JG, editor. Structures Congress 2018: bridges, transportation structures, and nonbuilding structures; 2018 Apr 19–21; Fort Worth, TX, USA. Reston: American Society of Civil Engineers; 2018. p. 205–16. 链接1

[68]  Brooks C, Dobson RJ, Banach DM, Dean D, Oommen T, Wolf RE, et al. Evaluating the use of unmanned aerial vehicles for transportation purposes: final report. Lansing: Michigan Department of Transportation; 2015 May. Report No.: RC-1616, MTRI-MDOTUAV-FR-2014. Contract No.: 2013-067.

[69]  Duque L, Seo J, Wacker J. Synthesis of unmanned aerial vehicle applications for infrastructures. J Perform Constr Facil 2018;32(4):04018046. 链接1

[70]  Abdel-Qader I, Abudayyeh O, Kelly ME. Analysis of edge-detection techniques for crack identification in bridges. J Comput Civ Eng 2003;17(4):255–63. 链接1

[71]  Jahanshahi MR, Kelly JS, Masri SF, Sukhatme GS. A survey and evaluation of promising approaches for automatic image-based defect detection of bridge structures. Struct Infrastruct Eng 2009;5(6):455–86. 链接1

[72]  Jahanshahi MR, Masri SF. A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation. Smart Mater Struct 2013;22(3):035019. 链接1

[73]  Zhu Z, German S, Brilakis I. Visual retrieval of concrete crack properties for automated post-earthquake structural safety evaluation. Autom Construct 2011;20(7):874–83. 链接1

[74]  Nishikawa T, Yoshida J, Sugiyama T, Fujino Y. Concrete crack detection by multiple sequential image filtering. Comput Civ Infrastruct Eng 2012;27 (1):29–47. 链接1

[75]  Yamaguchi T, Hashimoto S. Fast crack detection method for large-size concrete surface images using percolation-based image processing. Mach Vis Appl 2010;21(5):797–809. 链接1

[76]  Zhang W, Zhang Z, Qi D, Liu Y. Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors (Basel) 2014;14 (10):19307–28. 链接1

[77]  Olsen MJ, Chen Z, Hutchinson T, Kuester F. Optical techniques for multiscale damage assessment. Geomat Nat Haz Risk 2013;4(1):49–70. 链接1

[78]  Lee BY, Kim YY, Yi ST, Kim JK. Automated image processing technique for detecting and analysing concrete surface cracks. Struct Infrastruct Eng 2013;9 (6):567–77. 链接1

[79]  Liu YF, Cho SJ, Spencer BF Jr, Fan JS. Automated assessment of cracks on concrete surfaces using adaptive digital image processing. Smart Struct Syst 2014;14(4):719–41. 链接1

[80]  Liu YF, Cho SJ, Spencer BF Jr, Fan JS. Concrete crack assessment using digital image processing and 3D scene reconstruction. J Comput Civ Eng 2016;30 (1):04014124. 链接1

[81]  Jahanshahi MR, Masri SF, Padgett CW, Sukhatme GS. An innovative methodology for detection and quantification of cracks through incorporation of depth perception. Mach Vis Appl 2013;24(2):227–41. 链接1

[82]  Erkal BG, Hajjar JF. Laser-based surface damage detection and quantification using predicted surface properties. Autom Construct 2017;83:285–302. 链接1

[83]  Kim H, Ahn E, Cho S, Shin M, Sim SH. Comparative analysis of image binarization methods for crack identification in concrete structures. Cement Concr Res 2017;99:53–61. 链接1

[84]  Prasanna P, Dana KJ, Gucunski N, Basily BB, La HM, Lim RS, et al. Automated crack detection on concrete bridges. IEEE Trans Autom Sci Eng 2016;13 (2):591–9. 链接1

[85]  Adhikari RS, Moselhi O, Bagchi A. Image-based retrieval of concrete crack properties for bridge inspection. Autom Construct 2014;39:180–94. 链接1

[86]  Torok MM, Golparvar-Fard M, Kochersberger KB. Image-based automated 3D crack detection for post-disaster building assessment. J Comput Civ Eng 2014;28(5):A4014004. 链接1

[87]  Adhikari RS, Moselhi O, Bagchi A. A study of image-based element condition index for bridge inspection. In: Proceedings of the 30th International Symposium on Automation and Robotics in Construction and Mining: building the future in automation and robotics (volume 2); 2013 Aug 11– 15; Montreal, QC, Canada. International Association for Automation and Robotics in Construction; 2013. p. 868–79. 链接1

[88]  Paal SG, Jeon JS, Brilakis I, DesRoches R. Automated damage index estimation of reinforced concrete columns for post-earthquake evaluations. J Struct Eng 2015;141(9):04014228. 链接1

[89]  Yeum CM, Dyke SJ. Vision-based automated crack detection for bridge inspection. Comput Civ Infrastruct Eng 2015;30(10):759–70. 链接1

[90]  Greimann LF, Stecker JH, Kao AM, Rens KL. Inspection and rating of miter lock gates. J Perform Constr Facil 1991;5(4):226–38. 链接1

[91]  Jahanshahi MR, Chen FC, Joffe C, Masri SF. Vision-based quantitative assessment of microcracks on reactor internal components of nuclear power plants. Struct Infrastruct Eng 2017;13(8):1013–26. 链接1

[92]  Ghanta S, Karp T, Lee S. Wavelet domain detection of rust in steel bridge images. In: Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing; 2011 May 22–27; Prague, Czech Republic. Piscataway: IEEE; 2011. p. 1033–6. 链接1

[93]  Jahanshahi MR, Masri SF. Parametric performance evaluation of waveletbased corrosion detection algorithms for condition assessment of civil infrastructure systems. J Comput Civ Eng 2013;27(4):345–57. 链接1

[94]  Medeiros FNS, Ramalho GLB, Bento MP, Medeiros LCL. On the evaluation of texture and color features for nondestructive corrosion detection. EURASIP J Adv Signal Process 2010;2010:817473. 链接1

[95]  Shen HK, Chen PH, Chang LM. Automated steel bridge coating rust defect recognition method based on color and texture feature. Autom Construct 2013;31:338–56. 链接1

[96]  Son H, Hwang N, Kim C, Kim C. Rapid and automated determination of rusted surface areas of a steel bridge for robotic maintenance systems. Autom Construct 2014;42:13–24. 链接1

[97]  Igoe D, Parisi AV. Characterization of the corrosion of iron using a smartphone camera. Instrum Sci Technol 2016;44(2):139–47. 链接1

[98]  Ahuja SK, Shukla MK. A survey of computer vision based corrosion detection approaches. In: Satapathy S, Joshi A, editors. Information and communication technology for intelligent systems (ICTIS 2017)—volume 2. Cham: Springer; 2018. p. 55–63. 链接1

[99]  Koch C, Brilakis I. Pothole detection in asphalt pavement images. Adv Eng Inform 2011;25(3):507–15. 链接1

[100]  Salman M, Mathavan S, Kamal K, Rahman M. Pavement crack detection using the Gabor filter. In: Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems; 2013 Oct 6–9; The Hague, the Netherlands. Piscataway: IEEE; 2013. p. 2039–44. 链接1

[101]  Hu Y, Zhao C. A novel LBP based methods for pavement crack detection. J Pattern Recognit Res 2010;5(1):140–7. 链接1

[102]  Zou Q, Cao Y, Li Q, Mao Q, Wang S. CrackTree: automatic crack detection from pavement images. Pattern Recognit Lett 2012;33(3):227–38. 链接1

[103]  Kirschke KR, Velinsky SA. Histogram-based approach for automated pavement-crack sensing. J Transp Eng 1992;118(5):700–10. 链接1

[104]  Li L, Sun L, Tan S, Ning G. An efficient way in image preprocessing for pavement crack images. In: Proceedings of the 12th COTA International Conference of Transportation Professionals; 2012 Aug 3–6; Beijing, China. Reston: American Society of Civil Engineers; 2012. p. 3095–103. 链接1

[105]  Adu-Gyamfi YO, Okine NOA, Garateguy G, Carrillo R, Arce GR. Multiresolution information mining for pavement crack image analysis. J Comput Civ Eng 2012;26(6):741–9. 链接1

[106]  Chen YL, Jahanshahi MR, Manjunatha P, Gan WP, Abdelbarr M, Masri SF, et al. Inexpensive multimodal sensor fusion system for autonomous data acquisition of road surface conditions. IEEE Sens J 2016;16(21):7731–43. 链接1

[107]  Zakeri H, Nejad FM, Fahimifar A. Image based techniques for crack detection, classification and quantification in asphalt pavement: a review. Arch Comput Methods Eng 2017;24(4):935–77. 链接1

[108]  Koch C, Georgieva K, Kasireddy V, Akinci B, Fieguth P. A review on computer vision based defect detection and condition assessment of concrete and asphalt civil infrastructure. Adv Eng Inform 2015;29(2):196–210. Corrigendum in: Adv Eng Inform 2016;30(2):208–10. 链接1

[109]  Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. In: Proceedings of International Conference on Learning Representations 2015; 2015 May 7–9; San Diego, CA, USA; 2015. p. 1–14. 链接1

[110]  Xu Y, Bao Y, Chen J, Zuo W, Li H. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images. Struct Heal Monit. Epub 2018 Apr 2.

[111]  Zhang L, Yang F, Zhang YD, Zhu YJ. Road crack detection using deep convolutional neural network. In: Proceedings of 2016 IEEE International Conference on Image Processing; 2016 Sep 25–28; Phoenix, AZ, USA. Piscataway: IEEE; 2016. p. 3708–12. 链接1

[112]  Cha YJ, Choi W, Büyüköztürk O. Deep learning-based crack damage detection using convolutional neural networks. Comput Civ Infrastruct Eng 2017;32 (5):361–78. 链接1

[113]  Kim H, Ahn E, Shin M, Sim SH. Crack and noncrack classification from concrete surface images using machine learning. Struct Health Monit. Epub 2018 Apr 23.

[114]  Kim B, Cho S. Automated vision-based detection of cracks on concrete surfaces using a deep learning technique. Sensors (Basel) 2018;18(10):3452. 链接1

[115]  Kim B, Cho S. Automated and practical vision-based crack detection of concrete structures using deep learning. Comput Civ Infrastruct Eng. In press.

[116]  Lee Y, Kim B, Cho S. Image-based spalling detection of concrete structures incorporating deep learning. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.

[117]  Atha DJ, Jahanshahi MR. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Struct Health Monit 2018;17(5):1110–28. 链接1

[118]  Chen FC, Jahanshahi MR. NB-CNN: deep learning-based crack detection using convolutional neural network and naïve Bayes data fusion. IEEE Trans Ind Electron 2018;65(5):4392–400. 链接1

[119]  Yeum CM. Computer vision-based structural assessment exploiting large volumes of images [dissertation]. West Lafayette: Purdue University; 2016. 链接1

[120]  Xu Y, Li S, Zhang D, Jin Y, Zhang F, Li N, et al. Identification framework for cracks on a steel structure surface by a restricted Boltzmann machines algorithm based on consumer-grade camera images. Struct Contr Health Monit 2018;25(2):e2075. 链接1

[121]  Maguire M, Dorafshan S, Thomas RJ. SDNET2018: a concrete crack image dataset for machine learning applications [dataset]. Logan: Utah State University; 2018. 链接1

[122]  Bao Y, Tang Z, Li H, Zhang Y. Computer vision and deep learning-based data anomaly detection method for structural health monitoring. Struct Heal Monit 2019;18(2):401–21. 链接1

[123]  Dang J, Shrestha A, Haruta D, Tabata Y, Chun P, Okubo K. Site verification tests for UAV bridge inspection and damage image detection based on deep learning. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.

[124]  Yeum CM, Dyke SJ, Ramirez J. Visual data classification in post-event building reconnaissance. Eng Struct 2018;155:16–24. 链接1

[125]  Cha YJ, Choi W, Suh G, Mahmoudkhani S, Büyüköztürk O. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types. Comput Civ Infrastruct Eng 2018;33(9):731–47. 链接1

[126]  Zhang A, Wang KCP, Li B, Yang E, Dai X, Peng Y, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network. Comput Civ Infrastruct Eng 2017;32(10):805–19. 链接1

[127]  Hoskere V, Narazaki Y, Hoang TA, Spencer BF Jr. Vision-based structural inspection using multiscale deep convolutional neural networks. In: Proceedings of the 3rd Huixian International Forum on Earthquake Engineering for Young Researchers; 2017 Aug 11–12; Urbana, IL, USA; 2017.

[128]  Hoskere V, Narazaki Y, Hoang TA, Spencer BF Jr. Towards automated postearthquake inspections with deep learning-based condition-aware models. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.

[129]  Seitz SM, Curless B, Diebel J, Scharstein D, Szeliski R. A comparison and evaluation of multi-view stereo reconstruction algorithms. In: Proceedings of 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition: volume 1; 2006 Jun 17–22; New York City, NY, USA. Piscataway: IEEE; 2006. p. 519–28. 链接1

[130]  Khaloo A, Lattanzi D, Cunningham K, Dell’Andrea R, Riley M. Unmanned aerial vehicle inspection of the Placer River Trail Bridge through image-based 3D modelling. Struct Infrastruct Eng 2018;14(1):124–36. 链接1

[131]  Khaloo A, Lattanzi D, Jachimowicz A, Devaney C. Utilizing UAV and 3D computer vision for visual inspection of a large gravity dam. Front Built Environ 2018;4:31. 链接1

[132]  Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 1992;14(2):239–56. 链接1

[133]  Meshlab.net [Internet]. [cited 2018 Jun 20]. Available from: http://www. meshlab.net/.

[134]  CloudCompare: 3D point cloud and mesh processing software open source project [Internet]. [cited 2018 Jun 20]. Available from: http://www.danielgm. net/cc/.

[135]  Girardeau-Montaut D, Roux M, Marc R, Thibault G. Change detection on points cloud data acquired with a ground laser scanner. In: Proceedings of the ISPRS Workshop—Laser Scanning 2005; 2005 Sep 12–14; Enschede, the Netherlands; 2005. p. 30–5.

[136]  Lague D, Brodu N, Leroux J. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photogramm Remote Sens 2013;82:10–26. 链接1

[137]  Morgenthal G, Hallermann N. Quality assessment of unmanned aerial vehicle (UAV) based visual inspection of structures. Adv Struct Eng 2014;17 (3):289–302. 链接1

[138]  Hallermann N, Morgenthal G, Rodehorst V. Unmanned aerial systems (UAS)— case studies of vision based monitoring of ageing structures. In: Proceedings of the International Symposium Non-Destructive Testing in Civil Engineering; 2015 Sep 15–17; Berlin, Germany; 2015.

[139]  Khaloo A, Lattanzi D. Automatic detection of structural deficiencies using 4D hue-assisted analysis of color point clouds. In: Pakzad S, editor. Dynamics of civil structures, volume 2. Cham: Springer; 2019. p. 197–205. 链接1

[140]  Jafari B, Khaloo A, Lattanzi D. Deformation tracking in 3D point clouds via statistical sampling of direct cloud-to-cloud distances. J Nondestruct Eval 2017;36:65. 链接1

[141]  Ghahremani K, Khaloo A, Mohamadi S, Lattanzi D. Damage detection and finite-element model updating of structural components through point cloud analysis. J Aerosp Eng 2018;31(5):04018068. 链接1

[142]  Radke RJ, Andra S, Al-Kofahi O, Roysam B. Image change detection algorithms: a systematic survey. IEEE Trans Image Process 2005;14 (3):294–307. 链接1

[143]  Hussain M, Chen D, Cheng A, Wei H, Stanley D. Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J Photogramm Remote Sens 2013;80:91–106. 链接1

[144]  Tewkesbury AP, Comber AJ, Tate NJ, Lamb A, Fisher PF. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens Environ 2015;160:1–14. 链接1

[145]  Sakurada K, Okatani T, Deguchi K. Detecting changes in 3D structure of a scene from multi-view images captured by a vehicle-mounted camera. In: Proceedings of 2013 IEEE Conference on Computer Vision and Pattern Recognition; 2013 Jun 23–28; Portland, OR, USA. Piscataway: IEEE; 2013. p. 137–44. 链接1

[146]  Alcantarilla PF, Stent S, Ros G, Arroyo R, Gherardi R. Street-view change detection with deconvolutional networks. In: Proceedings of 2016 Robotics: Science and Systems Conference; 2016 Jun 18–22; Ann Arbor, MI, USA; 2016.

[147]  Stent S, Gherardi R, Stenger B, Soga K, Cipolla R. Visual change detection on tunnel linings. Mach Vis Appl 2016;27(3):319–30. 链接1

[148]  Kiziltas S, Akinci B, Ergen E, Tang P, Gordon C. Technological assessment and process implications of field data capture technologies for construction and facility/infrastructure management. Electron J Inf Technol Constr 2008;13:134–54. 链接1

[149]  Golparvar-Fard M, Peña-Mora F, Savarese S. D4AR—a 4-dimensional augmented reality model for automating construction progress monitoring data collection, processing and communication. J Inf Technol Constr 2009;14:129–53. 链接1

[150]  Huber D. ARIA: the Aerial Robotic Infrastructure Analyst. SPIE Newsroom [Internet] 2014 Jun 9 [cited 2019 Feb 24]. Available from: http://spie.org/ newsroom/5472-aria-the-aerial-robotic-infrastructure-analyst?SSO=1.

[151]  Earthsense.co [Internet]. Champaign: EarthSense, Inc.; [cited 2019 Feb 25]. Available from: https://www.earthsense.co.

[152]  Zhu Z, Brilakis I. Concrete column recognition in images and videos. J Comput Civ Eng 2010;24(6):478–87. 链接1

[153]  Koch C, Paal SG, Rashidi A, Zhu Z, König M, Brilakis I. Achievements and challenges in machine vision-based inspection of large concrete structures. Adv Struct Eng 2014;17(3):303–18. 链接1

[154]  Xiong X, Adan A, Akinci B, Huber D. Automatic creation of semantically rich 3D building models from laser scanner data. Autom Construct 2013;31:325–37. 链接1

[155]  Perez-Perez Y, Golparvar-Fard M, El-Rayes K. Semantic and geometric labeling for enhanced 3D point cloud segmentation. In: Perdomo-Rivera JL, Gonzáles-Quevedo A, del Puerto CL, Maldonado-Fortunet F, Molina-Bas OI, editors. Construction Research Congress 2016: old and new; 2016 May 31– June 2; San Juan, Puerto Rico. Reston: American Society of Civil Engineers; 2016. p. 2542–52. 链接1

[156]  Armeni I, Sener O, Zamir AR, Jiang H, Brilakis I, Fischer M, et al. 3D semantic parsing of large-scale indoor spaces. In: In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 1534–43. 链接1

[157]  Golparvar-Fard M, Bohn J, Teizer J, Savarese S, Peña-Mora F. Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques. Autom Construct 2011;20(8):1143–55. 链接1

[158]  Golparvar-Fard M, Peña-Mora F, Savarese S. Monitoring changes of 3D building elements from unordered photo collections. In: Proceedings of 2011 IEEE International Conference on Computer Vision Workshops; 2011 Nov 6– 13; Barcelona, Spain. Piscataway: IEEE; 2011. p. 249–56. 链接1

[159]  Lu R, Brilakis I, Middleton CR. Detection of structural components in point clouds of existing RC bridges. Comput Civ Infrastruct Eng 2019;34 (3):191–212. 链接1

[160]  Yeum CM, Choi J, Dyke SJ. Automated region-of-interest localization and classification for vision-based visual assessment of civil infrastructure. Struct Health Monit. Epub 2018 Mar 27.

[161]  Gao Y, Mosalam KM. Deep transfer learning for image-based structural damage recognition. Comput Civ Infrastruct Eng 2018;33(9):748–68. 链接1

[162]  Liang X. Image-based post-disaster inspection of reinforced concrete bridge systems using deep learning with Bayesian optimization. Comput Civ Infrastruct Eng. Epub 2018 December 5.

[163]  Narazaki Y, Hoskere V, Hoang TA, Spencer BF Jr. Vision-based automated bridge component recognition integrated with high-level scene understanding. In: Proceedings of the 13th International Workshop on Advanced Smart Materials and Smart Structures Technology; 2017 Jul 22–23; Tokyo, Japan; 2017.

[164]  Narazaki Y, Hoskere V, Hoang TA, Spencer BF Jr. Vision-based automated bridge component recognition with high-level scene consistency. Comput Civ Infrastruct Eng. In Press.

[165]  Narazaki Y, Hoskere V, Hoang TA, Spencer BF. Automated vision-based bridge component extraction using multiscale convolutional neural networks. In: Proceedings of the 3rd Huixian International Forum on Earthquake Engineering for Young Researchers; 2017 Aug 11–12; Urbana, IL, USA; 2017.

[166]  German S, Jeon JS, Zhu Z, Bearman C, Brilakis I, DesRoches R, et al. Machine vision-enhanced postearthquake inspection. J Comput Civ Eng 2013;27 (6):622–34. 链接1

[167]  German S, Brilakis I, Desroches R. Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for postearthquake safety assessments. Adv Eng Informatics 2012;26(4):846–58. 链接1

[168]  Anil EB, Akinci B, Garrett JH, Kurc O. Information requirements for earthquake damage assessment of structural walls. Adv Eng Inform 2016;30(1):54–64. 链接1

[169]  Anil EB, Akinci B, Kurc O, Garrett JH. Building-information-modeling–based earthquake damage assessment for reinforced concrete walls. J Comput Civ Eng 2016;30(4):04015076. 链接1

[170]  Wei Y, Kasireddy V, Akinci B, Smith I, Domer B. 3D imaging in construction and infrastructure management: technological assessment and future research directions3D imaging in construction and infrastructure management: technological assessment and future research directions. In: Advanced computing strategies for engineering: proceedings of the 25th EGICE International Workshop 2018; 2018 Jun 10–13; Lausanne, Switzerland. Cham: Springer; 2018. p. 37–60. 链接1

[171]  Farrar CR, James III GH. System identification from ambient vibration measurements on a bridge. J Sound Vibrat 1997;205(1):1–18. 链接1

[172]  Lynch JP, Sundararajan A, Law KH, Kiremidjian AS, Carryer E, Sohn H. Field validation of a wireless structural monitoring system on the Alamosa Canyon Bridge. In: Liu SC, editor. Proceedings volume 5057: Smart Structures and Materials 2003: smart systems and nondestructive evaluation for civil infrastructures; 2003 Mar 2–6; San Diego, CA, USA; 2003.

[173]  Jin G, Sain MK, Spencer Jr BF. Frequency domain system identification for controlled civil engineering structures. IEEE Trans Contr Syst Technol 2005;13(6):1055–62. 链接1

[174]  Jang S, Jo H, Cho S, Mechitov K, Rice JA, Sim SH, et al. Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation. Smart Struct Syst 2010;6(5–6):439–59. 链接1

[175]  Rice JA, Mechitov K, Sim SH, Nagayama T, Jang S, Kim R, et al. Flexible smart sensor framework for autonomous structural health monitoring. Smart Struct Syst 2010;6(5–6):423–38. 链接1

[176]  Moreu F, Kim R, Lei S, Diaz-Fañas G, Dai F, Cho S, et al. Campaign monitoring railroad bridges using wireless smart sensors networks. In: Proceedings of 2014 Engineering Mechanics Institute Conference [Internet]; 2014 Aug 5–8; Hamilton, OT, Canada, 2014 [cited 2017 Oct 11]. Available from: http:// emi2014.mcmaster.ca/index.php/emi2014/EMI2014/paper/viewPaper/139. 链接1

[177]  Cho S, Giles RK, Spencer Jr BF. System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction. Struct Contr Health Monit 2015;22(2):255–72. 链接1

[178]  Sim SH, Spencer Jr BF, Zhang M, Xie H. Automated decentralized modal analysis using smart sensors. Struct Contr Health Monit 2010;17(8):872–94. 链接1

[179]  Horn BKP, Schunck BG. Determining optical flow. Artif Intell 1981;17(1– 3):185–203. 链接1

[180]  Bruhn A, Weickert J, Schnörr C. Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int J Comput Vis 2005;61 (3):211–31. 链接1

[181]  Liu C. Beyond pixels: exploring new representations and applications for motion analysis [dissertation]. Cambridge: Massachusetts Institute of Technology; 2009. 链接1

[182]  Baker S, Scharstein D, Lewis JP, Roth S, Black MJ, Szeliski R. A database and evaluation methodology for optical flow. Int J Comput Vis 2011;92(1):1–31. 链接1

[183]  Sutton MA, Orteu JJ, Schreier HW. Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. New York City: Springer Science & Business Media; 2009. 链接1

[184]  The VIC-2DTM system [Internet]. Irmo: Correlated Solutions, Inc.; [cited 2019 Feb 24]. Available from: https://www.correlatedsolutions.com/vic-2d/.

[185]  GOM Correlate: evaluation software for 3D testing [Interent]. Braunschweig: GOM GmbH; [cited 2019 Feb 24]. Available from: https://www.gom.com/3dsoftware/gom-correlate.html.

[186]  Pan B, Qian K, Xie H, Asundi A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Meas Sci Technol 2009;20(6):062001. 链接1

[187]  Hoult NA, Take WA, Lee C, Dutton M. Experimental accuracy of two dimensional strain measurements using digital image correlation. Eng Struct 2013;46:718–26. 链接1

[188]  Dutton M, Take WA, Hoult NA. Curvature monitoring of beams using digital image correlation. J Bridge Eng 2014;19(3):05013001. 链接1

[189]  Ellenberg A, Branco L, Krick A, Bartoli I, Kontsos A. Use of unmanned aerial vehicle for quantitative infrastructure evaluation. J Infrastruct Syst 2015;21 (3):04014054. 链接1

[190]  McCormick N, Lord J. Digital image correlation for structural measurements. Proc Inst Civ Eng-Civ Eng 2012;165(4):185–90. 链接1

[191]  Yoneyama S, Kitagawa A, Iwata S, Tani K, Kikuta H. Bridge deflection measurement using digital image correlation. Exp Tech 2007;31(1):34–40. 链接1

[192]  Yoneyama S, Ueda H. Bridge deflection measurement using digital image correlation with camera movement correction. Mater Trans 2012;53 (2):285–90. 链接1

[193]  Helfrick MN, Niezrecki C, Avitabile P, Schmidt T. 3D digital image correlation methods for full-field vibration measurement. Mech Syst Signal Process 2011;25(3):917–27. 链接1

[194]  Reagan D. Unmanned aerial vehicle measurement using three-dimensional digital image correlation to perform bridge structural health monitoring [dissertation]. Lowell: University of Massachusetts Lowell; 2017. 链接1

[195]  Mahal M, Blanksvärd T, Täljsten B, Sas G. Using digital image correlation to evaluate fatigue behavior of strengthened reinforced concrete beams. Eng Struct 2015;105:277–88. 链接1

[196]  Ghorbani R, Matta F, Sutton MA. Full-field deformation measurement and crack mapping on confined masonry walls using digital image correlation. Exp Mech 2015;55(1):227–43. 链接1

[197]  Tomasi C, Kanade T. Detection and tracking of point features. Technical report. Pittsburgh: Carnegie Mellon University; 1991 Apr. Report No.: CMUCS-91-132.

[198]  Lewis JP. Fast normalized cross-correlation. Vis. Interface 1995;10:120–3. 链接1

[199]  Ye XW, Dong CZ, Liu T. A review of machine vision-based structural health monitoring: methodologies and applications. J Sens 2016;2016:7103039. 链接1

[200]  Feng D, Feng MQ. Computer vision for SHM of civil infrastructure: from dynamic response measurement to damage detection—a review. Eng Struct 2018;156:105–17. 链接1

[201]  Nogueira FMA, Barbosa FS, Barra LPS. Evaluation of structural natural frequencies using image processing. In: Proceedings of 2005 International Conference on Experimental Vibration Analysis for Civil Engineering Structures; 2005 Oct 26–28; Bordeaux, France; 2005.

[202]  Chang CC, Xiao XH. An integrated visual-inertial technique for structural displacement and velocity measurement. Smart Struct Syst 2010;6 (9):1025–39. 链接1

[203]  Fukuda Y, Feng MQ, Narita Y, Kaneko S, Tanaka T. Vision-based displacement sensor for monitoring dynamic response using robust object search algorithm. IEEE Sens J 2013;13(12):4725–32. 链接1

[204]  Min JH, Gelo NJ, Jo H. Real-time image processing for non-contact monitoring of dynamic displacements using smartphone technologies. In: Lynch JP, editor. Proceedings volume 9803: sensors and smart structures technologies for civil, mechanical, and aerospace systems 2016; 2016 Mar 20–24; Las Vegas, NV, USA; 2016. p. 98031B.

[205]  Dong CZ, Ye XW, Jin T. Identification of structural dynamic characteristics based on machine vision technology. Measurement 2018;126:405–16. 链接1

[206]  Celik O, Dong CZ, Catbas FN. Measurement of human loads using computer vision. In: Pakzad S, editor. Dynamics of civil structures, volume 2: proceedings of the 36th IMAC, a conference and exposition on structural dynamics 2018; 2018 Feb 12–15; Orlando, FL, USA. Cham: Springer; 2019. p. 191–5. 链接1

[207]  Lee J, Lee KC, Cho S, Sim SH. Computer vision-based structural displacement measurement robust to light-induced image degradation for in-service bridges. Sensors (Basel) 2017;17(10):2317. 链接1

[208]  Park JW, Moon DS, Yoon H, Gomez F, Spencer Jr BF, Kim JR. Visual-inertial displacement sensing using data fusion of vision-based displacement with acceleration. Struct Contr Health Monit 2018;25(3):e2122. 链接1

[209]  Schumacher T, Shariati A. Monitoring of structures and mechanical systems using virtual visual sensors for video analysis: fundamental concept and proof of feasibility. Sensors (Basel) 2013;13(12):16551–64. 链接1

[210]  Yoon H, Elanwar H, Choi H, Golparvar-Fard M, Spencer Jr BF. Target-free approach for vision-based structural system identification using consumergrade cameras. Struct Contr Health Monit 2016;23(12):1405–16. 链接1

[211]  Ye XW, Yi TH, Dong CZ, Liu T, Bai H. Multi-point displacement monitoring of bridges using a vision-based approach. Wind Struct 2015;20(2):315–26. 链接1

[212]  Abdelbarr M, Chen YL, Jahanshahi MR, Masri SF, Shen WM, Qidwai UA. 3D dynamic displacement-field measurement for structural health monitoring using inexpensive RGB-D based sensor. Smart Mater Struct 2017;26 (12):125016. 链接1

[213]  Ye XW, Yi TH, Dong CZ, Liu T. Vision-based structural displacement measurement: system performance evaluation and influence factor analysis. Measurement 2016;88:372–84. 链接1

[214]  Feng D, Feng MQ. Vision-based multipoint displacement measurement for structural health monitoring. Struct Contr Health Monit 2016;23(5):876–90. 链接1

[215]  Yoon H, Hoskere V, Park JW, Spencer BF Jr. Cross-correlation-based structural system identification using unmanned aerial vehicles. Sensors (Basel) 2017;17(9):2075. 链接1

[216]  Chen JG, Wadhwa N, Cha YJ, Durand F, Freeman WT, Buyukozturk O. Modal identification of simple structures with high-speed video using motion magnification. J Sound Vibrat 2015;345:58–71. 链接1

[217]  Cha YJ, Chen JG, Büyüköztürk O. Output-only computer vision based damage detection using phase-based optical flow and unscented Kalman filters. Eng Struct 2017;132:300–13. 链接1

[218]  Yang Y, Dorn C, Mancini T, Talken Z, Kenyon G, Farrar C, et al. Blind identification of full-field vibration modes from video measurements with phase-based video motion magnification. Mech Syst Signal Process 2017;85:567–90. 链接1

[219]  Yang Y, Dorn C, Mancini T, Talken Z, Kenyon G, Farrar C, et al. Spatiotemporal video-domain high-fidelity simulation and realistic visualization of full-field dynamic responses of structures by a combination of high-spatial-resolution modal model and video motion manipulations. Struct Contr Health Monit 2018;25(8):e2193. 链接1

[220]  Zaurin R, Khuc T, Catbas FN. Hybrid sensor-camera monitoring for damage detection: case study of a real bridge. J Bridge Eng 2016;21(6):05016002. 链接1

[221]  Pan B, Tian L, Song X. Real-time, non-contact and targetless measurement of vertical deflection of bridges using off-axis digital image correlation. NDT E Int 2016;79:73–80. 链接1

[222]  Xu Y, Brownjohn J, Kong D. A non-contact vision-based system for multipoint displacement monitoring in a cable-stayed footbridge. Struct Contr Health Monit 2018;25(5):e2155. 链接1

[223]  Kim SW, Kim NS. Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT E Int 2013;59:25–33. 链接1

[224]  Chen JG. Video camera-based vibration measurement of infrastructure [dissertation]. Cambridge: Massachusetts Institute of Technology; 2016. 链接1

[225]  Yoon H. Enabling smart city resilience : post-disaster response and structural health monitoring [dissertation]. Urbana: University of Illinois at UrbanaChampaign; 2016. 链接1

[226]  Mas D, Ferrer B, Acevedo P, Espinosa J. Methods and algorithms for videobased multi-point frequency measuring and mapping. Measurement 2016;85:164–74. 链接1

[227]  Chen Z, Li H, Bao Y, Li N, Jin Y. Identification of spatio-temporal distribution of vehicle loads on long-span bridges using computer vision technology. Struct Contr Health Monit 2016;23(3):517–34. 链接1

[228]  Hoskere V, Park JW, Yoon H, Spencer BF Jr. Vision-based modal survey of civil infrastructure using unmanned aerial vehicles. J Struct Eng. In press.

[229]  Ros G, Sellart L, Materzynska J, Vazquez D, Lopez AM. The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016 Jun 27–30; Las Vegas, NV, USA. Piscataway: IEEE; 2016. p. 3234–43. 链接1

[230]  Blender.org [Internet]. Amsterdam: Stichting Blender Foundation; [cited 2018 Aug 1]. Available from: https://www.blender.org/.

[231]  Hoskere V, Narazaki Y, Spencer BF Jr, Smith MD. Deep learning-based damage detection of miter gates using synthetic imagery from computer graphics. In: Proceedings of the 12th International Workshop on Structural Health Monitoring; 2019 Sep 10–12; Stanford, CA, USA; 2019. In press.

[232]  Hoskere V, Narazaki Y, Spencer BF Jr. Learning to detect important visual changes for structural inspections using physics-based graphics models. In: 9th International Conference on Structural Health Monitoring of Intelligent Infrastructure; 2019 Aug 4–7; Louis, MO, USA; 2019. In press.

[233]  Narazaki Y, Hoskere V, Hoang TA, Spencer BF Jr. Automated bridge component recognition using video data. In: Proceedings of the 7th World Conference on Structural Control and Monitoring; 2018 Jul 22–25; Qingdao, China; 2018.

[234]  Shi X, Chen Z, Wang H, Yeung DY, Wong W, Woo W. Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Proceedings of the 28th International Conference on Neural Information Processing Systems: volume 1; 2015 Dec 7–12; Montreal, QC, Canada. Cambridge: MIT Press; 2015. p. 802–10. 链接1

[235]  Unity3d.com [Internet]. San Francisco: Unity Technologies; c2019 [cited 2019 Feb 24]. Available from: https://unity3d.com/.

相关研究