期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2019年 第5卷 第4期 doi: 10.1016/j.eng.2019.03.012

数据驱动的加工过程异常诊断

a Faculty of Engineering, Environment and Computing, Coventry University, CV1 5FB, UK
b School of Logistics Engineering, Wuhan University of Technology, Wuhan 430070, China

收稿日期: 2018-07-17 修回日期: 2018-12-18 录用日期: 2019-03-14 发布日期: 2019-06-19

下一篇 上一篇

摘要

为了在计算机数控(CNC)加工过程中实现零缺陷生产,开发有效的异常检测诊断系统势在必行。然而,由于加工过程中机床和工装的动态条件限制,目前在工业生产中采用的相关诊断系统所能发挥的作用往往非常有限。为了解决这个问题,本文提出了一种全新的异常数据驱动的诊断系统。在该系统之中,我们持续收集随动态加工过程而产生的状态监测功率数据,并以此支持在线诊断分析。为了便于分析,我们设计了预处理机制对所监视的数据进行去噪、标准化以及校准。随后我们即从监控数据中提取关键特征,并定义阈值以识别异常。考虑到加工过程中机床和工装的动态条件,用于识别异常的阈值可以调整。我们还可以基于历史数据利用果蝇优化(FFO)算法优化阈值,以实现更准确的检测。通过实践验证,我们证明了该系统在工业应用中的有效性和巨大前景。

图片

图1

图2

图3

图4

图5

图6

图7

图8

参考文献

[ 1 ] Bayar N, Darmoul S, Hajri-Gabouj S, Pierreval H. Fault detection, diagnosis and recovery using artificial immune systems: a review. Eng Appl Artif Intell 2015;46:43–57. 链接1

[ 2 ] Venkatasubramanian V, Rengaswamy R, Yin K, Kavuri SN. A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput Chem Eng 2003;27(3):293–311. 链接1

[ 3 ] Aydin I, Karakose M, Akin E. Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Syst Appl 2010;37 (7):5285–94. 链接1

[ 4 ] Yang H, Li T, Hu X, Wang F, Zou Y. A survey of artificial immune system based intrusion detection. Sci World J 2014;2014:156790. 链接1

[ 5 ] Wang S, Liang YC, Li WD, Cai XT. Big data enabled intelligent immune system for energy efficient manufacturing management. J Clean Prod 2018;195:507–20. 链接1

[ 6 ] Gao R, Wang L, Teti R, Dornfeld D, Kumara S, Mori M, et al. Cloud-enabled prognosis for manufacturing. CIRP Ann 2015;64(2):749–72. 链接1

[ 7 ] Lee J, Wu F, Zhao W, Ghaffari M, Liao L, Siegel D. Prognostics and health management design for rotary machinery systems—reviews, methodology and applications. Mech Syst Signal Process 2014;42(1–2):314–34. 链接1

[ 8 ] Hu G, Li H, Xia Y, Luo L. A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis. Comput Ind 2018;100:287–96. 链接1

[ 9 ] Tian Y, Fu M, Wu F. Steel plates fault diagnosis on the basis of support vector machines. Neurocomputing 2015;151:296–303. 链接1

[10] Zheng J, Pan H, Cheng J. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines. Mech Syst Signal Process 2017;85:746–59. 链接1

[11] Wu H, Zhao J. Deep convolutional neural network model based chemical process fault diagnosis. Comput Chem Eng 2018;115:185–97. 链接1

[12] Madhusudana C, Kumar H, Narendranath S. Fault diagnosis of face milling tool using decision tree and sound signal. Materials Today Proc 2018;5 (5):12035–44. 链接1

[13] Lu F, Jiang J, Huang J, Qiu X. Dual reduced kernel extreme learning machine for aero-engine fault diagnosis. Aerosp Sci Technol 2017;71:742–50. 链接1

[14] Wen L, Li X, Gao L, Zhang Y. A new convolutional neural network-based datadriven fault diagnosis method. IEEE Trans Ind Electron 2018;65(7):5990–8. 链接1

[15] Wen L, Gao L, Li X. A new deep transfer learning based on sparse auto-encoder for fault diagnosis. IEEE Trans Syst Man Cybern Syst 2019;49(1):136–44. 链接1

[16] Wen L, Li X, Gao L. A new two-level hierarchical diagnosis network based on convolutional neural network. IEEE Trans Instrum Meas. Forthcoming 2019. 链接1

[17] García S, Luengo J, Herrera F. Tutorial on practical tips of the most influential data preprocessing algorithms in data mining. Knowl Base Syst 2016;98:1–29. 链接1

[18] Pan S, Yang Q. A survey on transfer learning. IEEE Trans Knowl Data Eng 2010;22(10):1345–59. 链接1

[19] Liu Z, Guo Y, Sealy M, Liu Z. Energy consumption and process sustainability of hard milling with tool wear progression. J Mater Process Technol 2016;229:305–12. 链接1

[20] Sealy M, Liu Z, Zhang D, Guo Y, Liu Z. Energy consumption and modeling in precision hard milling. J Clean Prod 2016;135:1591–601. 链接1

[21] Stoney R, Donohoe B, Geraghty D, O’Donnell G. The development of surface acoustic wave sensors (SAWs) for process monitoring. Procedia CIRP 2012;1:569–74. 链接1

[22] García Plaza E, Núñez López PJ. Application of the wavelet packet transform to vibration signals for surface roughness monitoring in CNC turning operations. Mech Syst Signal Process 2018;98:902–19. 链接1

[23] Feng Z, Zuo M, Chu F. Application of regularization dimension to gear damage assessment. Mech Syst Signal Process 2010;24(4):1081–98. 链接1

[24] Rimpault X, Bitar-Nehme E, Balazinski M, Mayer J. Online monitoring and failure detection of capacitive displacement sensor in a Capball device using fractal analysis. Measurement 2018;118:23–8. 链接1

[25] Xia M, Li T, Xu L, Liu L, De Silva C. Fault diagnosis for rotating machinery using multiple sensors and convolutional neural networks. IEEE/ASME Trans Mechatron 2018;23(1):101–10. 链接1

[26] Zheng X, Wang L, Wang S. A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem. Knowl Base Syst 2014;57:95–103. 链接1

[27] Liang Y, Lu X, Li W, Wang S. Cyber physical system and big data enabled energy efficient machining optimisation. J Clean Prod 2018;187:46–62. 链接1

[28] Powers D. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness & correlation. J Mach Learn Technol 2011;2 (1):37–63. 链接1

[29] Du T, Ke X, Liao J, Shen Y. DSLC-FOA: improved fruit fly optimization algorithm for application to structural engineering design optimization problems. Appl Math Model 2018;55:314–39. 链接1

相关研究