期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第5期 doi: 10.1016/j.eng.2020.03.017

煤矿开采动静载叠加诱发断层冲击地压机理

a State Key Laboratory of Coal Resources and Safe Mining, School of Mines, China University of Mining and Technology, Xuzhou 221116, China
b Department of Earth Science and Engineering, Royal School of Mines, Imperial College London, London SW7 2AZ, UK
c School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney NSW 2052, Australia

收稿日期: 2018-11-02 修回日期: 2018-12-01 录用日期: 2019-01-03 发布日期: 2020-09-02

下一篇 上一篇

摘要

断层作为煤层采掘过程中普遍存在的一种地质构造,其独特不连续结构控制着煤岩的变形、破坏与力学性质,该结构与煤层采掘活动之间的相互作用是断层活化及其诱发冲击地压的关键。本文通过调研总结煤层采掘活动与断层赋存状态之间的概念模型,提出了采动应力主导和矿震动载主导两种断层活化类型的力学机制及其动静载叠加诱冲机理;其次,结合物理实验、数值模拟和现场微震监测结果验证了模型与机理的合理性;在此基础上,针对性地探讨了断层冲击地压监测与防治的方法和策略。研究结果表明,断层冲击地压是由断层煤柱高静载与断层活化动载叠加诱发,其中,断层煤柱高静载是断层与顶板结构双重作用导致,断层活化动载是由采动应力主导型局部解锁活化、等效劈裂破坏和矿震动载主导型超低摩擦效应组成。研究结果对于系统理解断层冲击地压机理、监测与防治具有重要指导意义。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

图18

参考文献

[ 1 ] Pan YS. Study on rock burst initiation and failure propagation [dissertation]. Beijing: Tsinghua University; 1999. Chinese. 链接1

[ 2 ] Cai W, Dou LM, Li ZL, He J, He H, Ding YL. Mechanical initiation and propagation mechanism of a thrust fault: a case study of the Yima section of the Xiashi–Yima Thrust (north side of the eastern Qinling Orogen, China). Rock Mech Rock Eng 2015;48(5):1927–45. 链接1

[ 3 ] Lu CP, Liu Y, Zhang N, Zhao TB, Wang HY. In-situ and experimental investigations of rockburst precursor and prevention induced by fault slip. Int J Rock Mech Min Sci 2018;108:86–95. 链接1

[ 4 ] Cai W, Dou LM, Li ZL, Liu J, Gong SY, He J. Microseismic multidimensional information identification and spatio-temporal forecasting of rock burst: a case study of Yima Yuejin Coal Mine, Henan, China. Chin J Geophys 2014;57 (8):2687–700. 链接1

[ 5 ] Li ZL, Dou LM, Cai W, Wang GF, He J, Gong SY, et al. Investigation and analysis of the rock burst mechanism induced within fault-pillars. Int J Rock Mech Min Sci 2014;70:192–200. 链接1

[ 6 ] Michalski A. Assessment of rock burst hazard in the approach of a caved longwall to a fault. Przegl Gorn 1977;23:387–97. 链接1

[ 7 ] Qi QX, Liu TQ, Shi YW. Mechanism of frction sliding destability of rock burst. Ground Pressure Strata Control 1995;Z1(3–4):174–7. 链接1

[ 8 ] Li ZH. Research on rockburst mechanism induced by fault slip during coal mining operation [dissertation]. Xuzhou: China University of Mining and Technology; 2009. Chinese. 链接1

[ 9 ] Li ZL, Dou LM, Cai W, Wang GF, Ding YL, Kong Y. Mechanical analysis of static stress within fault-pillars based on a voussoir beam structure. Rock Mech Rock Eng 2016;49(3):1097–105. 链接1

[10] Zuo JP, Chen ZH, Wang HW, Liu XP, Wu ZP. Experimental investigation on fault activation pattern under deep mining. J China Coal Soc 2009;34(3):305–9. 链接1

[11] Kong P, Jiang L, Shu J, Wang L. Mining stress distribution and fault-slip behavior: a case study of fault-influenced longwall coal mining. Energies 2019;12(13):2494. 链接1

[12] Ji HG, Ma HS, Wang JA, Zhang YH, Cao H. Mining disturbance effect and mining arrangements analysis of near-fault mining in high tectonic stress region. Saf Sci 2012;50(4):649–54. 链接1

[13] Jiang JQ, Wu QL, Qu H. Evolutionary characteristics of mining stress near the hard-thick overburden normal faults. J Min Saf Eng 2014;31(6):881–7. 链接1

[14] Zhang NB. Mechanism and engineering practice of fault rockburst [dissertation]. Beijing: China Coal Research Institute; 2014. Chinese. 链接1

[15] Li T, Mu Z, Liu G, Du J, Lu H. Stress spatial evolution law and rockburst danger induced by coal mining in fault zone. Int J Min Sci Technol 2016;26 (3):409–15. 链接1

[16] Jiang YD, Wang T, Zhao YX, Wang WJ. Experimental study on the mechanisms of fault reactivation and coal bumps induced by mining. J Coal Science Eng 2013;19(4):507–13. 链接1

[17] Zhu GA, Dou LM, Liu Y, Su ZG, Li H, Kong Y, et al. Dynamic behavior of fault slip induced by stress waves. Shock Vib 2016;2016:4386836. 链接1

[18] Luo H, Li ZH, Wang AW, Xiao YH. Study on the evolution law of stress field when approaching fault in deep mining. J China Coal Soc 2014;39(2):322–7. Chinese. 链接1

[19] Islam MR, Shinjo R. Mining-induced fault reactivation associated with the main conveyor belt roadway and safety of the Barapukuria Coal Mine in Bangladesh: constraints from BEM simulations. Int J Coal Geol 2009;79:115–30. 链接1

[20] Sainoki A, Mitri HS. Simulating intense shock pulses due to asperities during fault-slip. J Appl Geophys 2014;103:71–81. 链接1

[21] Sainoki A, Mitri HS. Effect of slip-weakening distance on selected seismic source parameters of mining-induced fault-slip. Int J Rock Mech Min Sci 2015;73:115–22. 链接1

[22] Brace WF, Byerlee JD. Stick–slip as a mechanism for earthquakes. Science 1966;153:990–2. 链接1

[23] Song YM, Ma SP, Yang XB, Jiang YD. Experimental investigation on instability transient process of fault rockburst. Chin J Rock Mech Eng 2011;30(4):812–7. 链接1

[24] Cui YQ, Ma SL, Liu LQ. Effect of lateral stress perturbation on frictional behavior: an experimental study. Seismol Geol 2005;27(4):645–52. 链接1

[25] Xie H, Zhao X, Liu J, Zhang R, Xue D. Influence of different mining layouts on the mechanical properties of coal. Int J Min Sci Technol 2012;22(6):749–55. 链接1

[26] Jaeger JC, Cook NG, Zimmerman R. Fundamentals of rock mechanics. Washington: John Wiley & Sons; 2009. 链接1

[27] Guo LL, Liu LQ, Ma J. The magnitude estimation in stick–slip experiments and analysis of stress drop. Chin J Geophys 2014;57(3):867–76. 链接1

[28] Ma TH, Tang CA, Tang SB, Kuang L, Yu Q, Kong DQ, et al. Rockburst mechanism and prediction based on microseismic monitoring. Int J Rock Mech Min Sci 2018;110:177–88. 链接1

[29] Cai W, Dou L, Si G, Cao A, He J, Liu S. A principal component analysis/fuzzy comprehensive evaluation model for coal burst liability assessment. Int J Rock Mech Min Sci 2016;100(81):62–9. 链接1

[30] Zubelewicz A, Mroz Z. Numerical simulation of rock burst processes treated as problems of dynamic instability. Rock Mech Rock Eng 1983;16(4):253–74. 链接1

[31] Li Y, Tang X, Yang S, Chen J. Evolution of the broken rock zone in the mixed ground tunnel based on the DSCM. Tunn Undergr Space Technol 2019;84:248–58. 链接1

[32] Wang GF, Gong SY, Dou LM, Cai W, Jin F, Fan CJ. Behaviour and bursting failure of roadways based on a pendulum impact test facility. Tunn Undergr Space Technol 2019;92:103042. 链接1

[33] Cai W. Fault rockburst induced by static and dynamic loads superposition and its monitoring and warning [dissertation]. Xuzhou: China University of Mining and Technology; 2015. Chinese. 链接1

[34] Anderson EM. The dynamics of faulting. Trans Edinburgh Geol Soc 1905;8 (3):387–402. 链接1

[35] Bräuner G. Rockbursts in coal mines and their prevention. Rotterdam: AA Balkema Publishers; 1994. 链接1

[36] Konicek P, Waclawik P. Stress changes and seismicity monitoring of hard coal longwall mining in high rockburst risk areas. Tunn Undergr Space Technol 2018;81:237–51. 链接1

[37] Li XL, Wang EY, Li ZH, Liu ZT, Song DZ, Qiu LM. Rock burst monitoring by integrated microseismic and electromagnetic radiation methods. Rock Mech Rock Eng 2016;49(11):4393–406. 链接1

[38] Dou LM, He XQ. Theory and technology of rock burst prevention. Xuzhou: China University of Mining and Technology Press; 2001. Chinese. 链接1

[39] Feng XT, Liu J, Chen B, Xiao Y, Feng G, Zhang F. Monitoring, warning, and control of rockburst in deep metal mines. Engineering 2017;3(4):538–45. 链接1

[40] Cai W, Dou LM, Zhang M, Cao WZ, Shi JQ, Feng LF. A fuzzy comprehensive evaluation methodology for rock burst forecasting using microseismic monitoring. Tunn Undergr Space Technol 2018;80:232–45. 链接1

[41] Si G, Durucan S, Jamnikar S, Lazar J, Abraham K, Korre A, et al. Seismic monitoring and analysis of excessive gas emissions in heterogeneous coal seams. Int J Coal Geol 2015;149:41–54. 链接1

[42] Cai W, Dou LM, Cao AY, Gong SY, Li ZL. Application of seismic velocity tomography in underground coal mines: a case study of Yima mining area, Henan, China. J Appl Geophys 2014;109:140–9. 链接1

[43] Li ZL, Dou LM, Cai W, Wang GF, Ding YL, Kong Y. Roadway stagger layout for effective control of gob-side rock bursts in the longwall mining of a thick coal seam. Rock Mech Rock Eng 2016;49(2):621–9. 链接1

[44] Konicek P, Soucek K, Stas L, Singh R. Long-hole destress blasting for rockburst control during deep underground coal mining. Int J Rock Mech Min Sci 2013;61:141–53. 链接1

[45] Durucan S, Cao W, Cai W, Shi JQ, Korre A, Si G, et al. Monitoring, assessment and mitigation of rock burst and gas outburst induced seismicity in longwall top coal caving mining. In: Proceedings of the 2019 Rock Dynamics Summit; 2019 May 7–11; Okinawa, Japan; 2019. 链接1

[46] Si G, Durucan S, Shi J, Korre A, Cao W. Parametric analysis of slotting operation induced failure zones to stimulate low permeability coal seams. Rock Mech Rock Eng 2019;52(1):163–82. 链接1

[47] He H, Dou LM, Fan J, Du TT, Sun XL. Deep-hole directional fracturing of thick hard roof for rockburst prevention. Tunn Undergr Space Technol 2012;32:34–43. 链接1

相关研究