《工程(英文)》 >> 2021年 第7卷 第8期 doi: 10.1016/j.eng.2020.06.016
基于液冷的电池热管理系统快充-冷却耦合规划方法
a State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
b Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
下一篇 上一篇
摘要
高效的快速充电技术对电动汽车行驶里程的拓展十分重要。然而,锂离子电池在大电流充电倍率下会大量产热。为解决这一问题,急需一种高效的快速充电-冷却规划方法。此次研究针对锂离子电池组的快速充电过程,设计了一种配有微流道的基于液冷的热管理系统。基于81组实验数据,提出了一种基于神经网络的回归模型,由三个考虑以下输出的子模型构成:最高温度、温度标准差及功耗。训练后的子模型均呈现出较高的测试准确性(99.353%、97.332%和98.381%)。此回归模型用于预测一个设计方案全集的三个输出参数,此全集由不同充电阶段的充电电流倍率[0.5C、1C、1.5C、2C和2.5C(1C = 5 A)],以及不同的冷却液流量(0.0006 kg·s-1、0.0012 kg·s-1和0.0018 kg·s-1)组成。最终从预测得到的设计方案全集中筛选出一组最优过程方案,并经实验得到了验证。结果表明在功耗低于0.02 J的情况下电池组荷电状态(SOC)值经15 min充电后增长了0.5。同时最高温度和温度标准差可分别控制在33.35 ℃和0.8 ℃以内。本文所提出的方法可供电动汽车行业在实际快速充电工况下使用。此外,可以基于实验数据预测最佳快速充电-冷却计划,从而显著提高充电过程设计的效率,并控制冷却过程中的能耗。
补充材料
图片
图1
图2
图3
图4
图5
图6
图7
图8
图9
图10
图11
图12
参考文献
[1] Fathabadi H. A novel design including cooling media for lithium-ion batteries pack used in hybrid and electric vehicles. J Power Sources 2014;245:495–500. 链接1
[2] Jaguemont J, Boulon L, Dubé Y. A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Appl Energy 2016;164:99–114. 链接1
[3] Sun J, Li J, Zhou T. Toxicity, a serious concern of thermal runaway from commercial Li-ion battery. Nano Energy 2016;27:313–9. 链接1
[4] Wang Q, Jiang B, Li B, Yan Y. A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles. Renew Sustain Energy Rev 2016;64:106–28. 链接1
[5] Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources 2002;110(2):377–82. 链接1
[6] Dan D, Yao C, Zhang Y, Zhang H, Zeng Z, Xu X. Dynamic thermal behavior of micro heat pipe array-air cooling battery thermal management system based on thermal network model. Appl Therm Eng 2019;162:114183. 链接1
[7] Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources 2013;239:30–6. 链接1
[8] Liu Z, Wang Y, Zhang J, Liu Z. Shortcut computation for the thermal management of a large air-cooled battery pack. Appl Therm Eng 2014;66(1– 2):445–52. 链接1
[9] He F, Li X, Ma L. Combined experimental and numerical study of thermal management of battery module consisting of multiple Li-ion cells. Int J Heat Mass Transfer 2014;72:622–9. 链接1
[10] Chen K, Song M, Wei W, Wang S. Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement. Energy 2018;145:603–13. 链接1
[11] Yang N, Zhang X, Li Z, Hua D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: a comparative analysis between aligned and staggered cell arrangements. Appl Therm Eng 2015;80:55–65. 链接1
[12] Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources 2011;196 (13):5685–96. 链接1
[13] Fathabadi H. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles. Energy 2014;70:529–38. 链接1
[14] Sabbah R, Kizilel R, Selman JR. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution. J Power Sources 2008;182(2):630–8. 链接1
[15] Wu W, Yang X, Zhang G. Experimental investigation on the thermal performance of heat pipe-assisted phase change material based battery thermal management system. Energy Convers Manage 2017;138:486–92. 链接1
[16] Zheng Y, Shi Y, Huang Y. Optimisation with adiabatic interlayers for liquiddominated cooling system on fast charging battery packs. Appl Therm Eng 2019;147:636–46. 链接1
[17] Li J, Huang J, Cao M. Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries. Appl Therm Eng 2018;131:660–8. 链接1
[18] Park Y, Jun S, Kim S, Lee DH. Design optimization of a loop heat pipe to cool a lithium ion battery onboard a military aircraft. J Mech Sci Technol 2010;24 (2):609–18. 链接1
[19] Rao Z, Wang S, Wu M, Lin Z, Li F. Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Convers Manage 2013;65:92–7. 链接1
[20] Wu MS, Liu KH, Wang YY, Wan CC. Heat dissipation design for lithium-ion batteries. J Power Sources 2002;109(1):160–6. 链接1
[21] Ye Y, Bernard LHS, Shi Y, Tay AAO. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Appl Therm Eng 2015;86:281–91. 链接1
[22] Zhao Y, Zhang K, Diao Y, inventors; Guangwei Hetong Energy Technology Beijing Co. Ltd., assignee. Heat pipe with micro-pore tubes array and making method thereof and heat exchanging system. US patent US 20110203777 A1. 2011 Aug 25.
[23] Khateeb SA, Farid MM, Selman JR, Al-Hallaj S. Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter. J Power Sources 2004;128(2):292–307. 链接1
[24] Mei W, Duan Q, Zhao C, Lu W, Sun J, Wang Q. Three-dimensional layered electrochemical-thermal model for a lithium-ion pouch cell. Part II. The effect of units number on the performance under adiabatic condition during the discharge. Int J Heat Mass Transf 2020;148:119082. 链接1
[25] Jarrett A, Kim IY. Design optimization of electric vehicle battery cooling plates for thermal performance. J Power Sources 2011;196(23): 10359–68. 链接1
[26] Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manage 2016;126:622–31. 链接1
[27] Basu S, Hariharan KS, Kolake SM. Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system. Appl Energy 2016;181:1–13. 链接1
[28] Huo Y, Rao Z. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method. Int J Heat Mass Transf 2015;91:374–84. 链接1
[29] Yang XH, Tan SC, Liu J. Thermal management of Li-ion battery with liquid metal. Energy Convers Manage 2016;117:577–85. 链接1
[30] Wu F, Rao Z. The lattice Boltzmann investigation of natural convection for nanofluid based battery thermal management. Appl Therm Eng 2017;115:659–69. 链接1
[31] Chen S, Peng X, Bao N. A comprehensive analysis and optimization process for an integrated liquid cooling plate for a prismatic lithium-ion battery module. Appl Therm Eng 2019;156:324–39. 链接1
[32] Panchal S, Dincer I, Agelinchaab M. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions. Appl Therm Eng 2016;96:190–9. 链接1
[33] Zhang T, Gao Q, Wang G. Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process. Appl Therm Eng 2017;116:655–62. 链接1
[34] Tong S, Lacap JH, Park JW. Battery state of charge estimation using a loadclassifying neural network. J Energy Storage 2016;7:236–43. 链接1
[35] Kalogirou SA. Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev 2001;5(4): 373–401. 链接1
[36] Shen WX, Chan CC, Lo EWC, Chau KT. A new battery available capacity indicator for electric vehicles using neural network. Energy Convers Manage 2002;43(6):817–26. 链接1
[37] Cheng B, Bai Z, Cao B. State of charge estimation based on evolutionary neural network. Energy Convers Manage 2008;49(10):2788–94. 链接1