期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2021年 第7卷 第11期 doi: 10.1016/j.eng.2020.08.016

中国高比例可再生能源电力消纳的瓶颈与对策

a State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
b School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China

收稿日期: 2020-04-16 修回日期: 2020-08-21 录用日期: 2020-08-27 发布日期: 2020-12-01

下一篇 上一篇

摘要

中国已成为世界上最大的能源生产国和消费国,风力发电和太阳能装机容量均位居世界第一。然而,中国日益严重的弃风弃光问题,严重阻碍了可再生能源的开发利用。针对可再生能源消费中存在的问题,本文分析了制约可再生能源发电容量的4 个关键性因素:功率平衡、功率调节性能、输电容量和负荷水平。针对这些瓶颈,我们提出了7 个解决方案:促进集中式和分布式可再生能源的协作发展、提高火力发电调峰的灵活性、增加灵活可调的能源比例、加快输电通道和柔性电网的建设、发展需求响应和虚拟发电厂、发展可再生能源主动支撑与储能技术、建立合适的政策和市场机制。中国政府和能源部门出台了一系列政策措施,三年来,中国可再生能源发展取得了显著成就。风力发电弃风率由2016 年的17%下降到2018 年的7%,太阳能弃光率由2016 年的10%下降到2018 年的3%。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Rueda-Bayona JG, Guzmán A, Eras JJC, Silva-Casarín R, Bastidas-Arteaga E, Horrillo-Caraballo J. Renewables energies in Colombia and the opportunity for the offshore wind technology. J Cleaner Prod 2019;220:529–43. 链接1

[ 2 ] China electric power industry annual development report [Internet]. Beijing: China Electricity Council; 2019 Jun 14 [cited 2020 Oct 24]. Available from: http://www.cec.org.cn/yaowenku-aidi/2019-06-14/191782.htm. Chinese. 链接1

[ 3 ] Wind power grid-connected operation in 2018 [Internet]. Beijing: The State Council the People’s Republic of China; 2019 Jan 29 [cited 2020 Oct 24]. Available from: http://www.gov.cn/xinwen/2019-01/29/content_5361945. htm. Chinese. 链接1

[ 4 ] Statistics on photovoltaic power generation in 2018 [Internet]. Beijing: National Energy Administration; 2019 Mar 19 [cited 2020 Oct 24]. Available from: http://www.nea.gov.cn/2019-03/19/c_137907428.htm. Chinese. 链接1

[ 5 ] Energy development strategy action plan (2014–2020) [Internet]. Beijing: The State Council of the People’s Republic of China; 2014 Nov 19 [cited 2020 Oct 24]. Available from: http://www.gov.cn/zhengce/content/2014-11/ 19/content_9222.htm. Chinese. 链接1

[ 6 ] Sahu BK. Wind energy developments and policies in China: a short review. Renew Sustain Energy Rev 2018;81(Pt 1):1393–405. 链接1

[ 7 ] Zhao XG, Ren LZ. Focus on the development of offshore wind power in China: has the golden period come? Renewable Energy 2015;81:644–57. 链接1

[ 8 ] deCastro M, Salvador S, Gómez-Gesteira M, Costoya X, Carvalho D, SanzLarruga FJ, et al. Europe, China and the United States: three different approaches to the development of offshore wind energy. Renew Sustain Energy Rev 2019;109:55–70. 链接1

[ 9 ] ‘‘13th Five-Year” plan for electric power development [Internet]. Beijing: National Development and Reform Commission; 2016 Nov 7 [cited 2020 Oct 24]. Chinese. Available from: http://www.gov.cn/xinwen/2016-12/22/ 5151549/files/696e98c57ecd49c289968ae2d77ed583.pdf. 链接1

[10] 2018–2019 National electricity supply and demand situation analysis forecast report [Internet]. Beijing: China Electricity Council; 2019 [cited 2020 Oct 24]. Available from: http://www.cec.org.cn/yaowenkuaidi/2019-01-29/188578. html. Chinese. 链接1

[11] Kumar L, Hasanuzzaman M, Rahim NA. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: a review. Energy Convers Manage 2019;195:885–908. 链接1

[12] Feng J, Feng L, Wang J, King CW. Evaluation of the onshore wind energy potential in mainland China—based on GIS modeling and EROI analysis. Resour Conserv Recycl 2020;152:104484. 链接1

[13] Fan W, Hao Y. An empirical research on the relationship amongst renewable energy consumption, economic growth and foreign direct investment in China. Renewable Energy 2020;146:598–609. 链接1

[14] Tang N, Zhang Y, Niu Y, Du X. Solar energy curtailment in China: status quo, reasons and solutions. Renew Sustain Energy Rev 2018;97:509–28. 链接1

[15] Guo L, Ding Y, Zeng D, Liu L. A mechanism for two-level power market in China: promoting cross regional consumption of renewable energy. Energy Procedia 2019;159:255–60. 链接1

[16] Wang C, Liu S, Bie Z, Wang J. Renewable energy accommodation capability evaluation of power system with wind power and photovoltaic integration. IFAC-PapersOnLine 2018;51(28):55–60. 链接1

[17] Liu Y, Guan X, Li J, Sun D, Ohtsuki T, Hassan MM, et al. Evaluating smart grid renewable energy accommodation capability with uncertain generation using deep reinforcement learning. Future Gener Comput Syst 2020;110:647–57. 链接1

[18] Hungerford Z, Bruce A, MacGill I. The value of flexible load in power systems with high renewable energy penetration. Energy 2019;188:115960. 链接1

[19] Al-Shetwi AQ, Hannan MA, Jern KP, Mansur M, Mahlia TMI. Grid-connected renewable energy sources: review of the recent integration requirements and control methods. J Cleaner Prod 2020;253:119831. 链接1

[20] Wu X, Xiao L, Yang J, Xu Z. Design method for strengthening high-proportion renewable energy regional power grid using VSC-HVDC technology. Electr Power Syst Res 2020;180:106160. 链接1

[21] Li S, Zhang S, Andrews-Speed P. Using diverse market-based approaches to integrate renewable energy: experiences from China. Energy Policy 2019;125 (2):330–7. 链接1

[22] Zhen JL, Huang GH, Li W, Wu CB, Wang S. Electric power system planning with renewable energy accommodation for supporting the sustainable development of Tangshan City. China. J Cleaner Prod 2016;139:1308–25. 链接1

[23] Liu J, Hu Y, Zeng D, Xia M, Cui Q. Architecture and feature of smart power generation. Proc Chin Soc Elect Eng 2017;37(22):6463–70. Chinese. 链接1

[24] Liu J, Wang Q, Fang F, et al. Data-driven-based application architecture and technologies of smart power generation. Proc Chin Soc Elect Eng 2019;39 (12):3578–86. Chinese. 链接1

[25] Alirezazadeh A, Rashidinejad M, Abdollahi A, Afzali P, Bakhshai A. A new flexible model for generation scheduling in a smart grid. Energy 2020;191:116438. 链接1

[26] Jordehi AR. Optimisation of demand response in electric power systems, a review. Renew Sustain Energy Rev 2019;103:308–19. 链接1

[27] Ju L, Tan Q, Zhao R, Gu S, Yang J, Wang W. Multi-objective electro–thermal coupling scheduling model for a hybrid energy system comprising wind power plant, conventional gas turbine, and regenerative electric boiler, considering uncertainty and demand response. J Cleaner Prod 2019;237:117774. 链接1

[28] Hany Elgamal A, Kocher-Oberlehner G, Robu V, Andoni M. Optimization of a multiple-scale renewable energy-based virtual power plant in the UK. Appl Energy 2019;256:113973. 链接1

[29] Kong X, Xiao J, Wang C, Cui K, Jin Q, Kong D. Bi-level multi-time scale scheduling method based on bidding for multi-operator virtual power plant. Appl Energy 2019;249:178–89. 链接1

相关研究