期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第9卷 第2期 doi: 10.1016/j.eng.2021.02.021

面向塑料回收的工业级PP/PE物理合金化技术

National Engineering Research Center of Novel Equipment for Polymer Processing & Key Laboratory of Polymer Processing Engineering of the Ministry of Education & Guangdong Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangdong 510640, China

收稿日期: 2020-07-10 修回日期: 2020-10-22 录用日期: 2021-02-06 发布日期: 2021-08-14

下一篇 上一篇

摘要

聚丙烯(PP)和聚乙烯(PE)在日常生活中无处不在。但PP和PE的相容性较差,通过简单熔融共混难以制备具有良好力学性能的合金,为废弃PP、PE的回收再利用带来难题。此外,由于可能存在的环境污染问题,传统的添加相容剂诱导增容的方法也难以得到广泛应用。在本文中,受到中国传统榨油方法的启发,我们报道了一种简单的、可工业化的无添加制备高度取向蜂窝结构PP/PE 二元共混物的新技术。由于独特的蜂窝结构,共混物的力学性能高于其亲系材料,也高于采用传统密炼机制备的样品。因此,本文报道的方法不仅可以应用于不相容聚合物体系的物理增容,也可以为无添加、免分拣的废旧塑料回收提供一种新路径。我们期待通过该技术可以实现废弃塑料环境友好且可持续的循环高值利用。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv 2017;3(7):e1700782. 链接1

[ 2 ] Eagan JM, Xu J, Di Girolamo R, Thurber CM, Macosko CW, LaPointe AM, et al. Combining polyethylene and polypropylene: enhanced performance with PE/ iPP multiblock polymers. Science 2017;355(6327):814–6. 链接1

[ 3 ] Meran C, Ozturk O, Yuksel M. Examination of the possibility of recycling and utilizing recycled polyethylene and polypropylene. Mater Des 2008;29 (3):701–5. 链接1

[ 4 ] Teh JW, Rudin A, Keung JC. A review of polyethylene–polypropylene blends and their compatibilization. Adv Polym Technol 1994;13(1):1–23. 链接1

[ 5 ] Rahimi A, García JM. Chemical recycling of waste plastics for new materials production. Nat Rev Chem 2017;1(6):1–11. 链接1

[ 6 ] Pivnenko K, Eriksen MK, Martín-Fernández JA, Eriksson E, Astrup TF. Recycling of plastic waste: presence of phthalates in plastics from households and industry. Waste Manage 2016;54:44–52. 链接1

[ 7 ] Zhao Y, Lv X, Ni H. Solvent-based separation and recycling of waste plastics: a review. Chemosphere 2018;209:707–20. 链接1

[ 8 ] Song, Y. T’ien-Kung K’ai-Wu: Chinese technology in the seventeenth century. University Park: Pennsylvania State University Press; 1966.

[ 9 ] Noel III OF, Carley JF. Morphology of polyethylene–polypropylene blends. Polym Eng Sci 1984;24(7):488–92. 链接1

[10] Tripathi SN, Rao GSS, Mathur AB, Jasra R. Polyolefin/graphene nanocomposites: a review. RSC Adv 2017;7(38):23615–32. 链接1

[11] Gibson LJ. The hierarchical structure and mechanics of plant materials. J R Soc Interfaces 2012;9(76):2749–66. 链接1

[12] Nedjari S, Awaja F, Altankov G. Three dimensional honeycomb patterned fibrinogen based nanofibers induce substantial osteogenic response of mesenchymal stem cells. Sci Rep 2017;7:15947. 链接1

[13] Xiong W, Gao Y, Wu Xu, Hu X, Lan D, Chen Y, et al. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo2O4 nanowires for high-performance supercapacitor. ACS Appl Mater Interf 2014;6(21):19416–23. 链接1

[14] Wahl L, Maas S, Waldmann D, Zürbes A, Frères P. Shear stresses in honeycomb sandwich plates: analytical solution, finite element method and experimental verification. J Sandw Struct Mater 2012;14(4):449–68. 链接1

[15] Zuo D, Zhang L, Yi C, Zuo H. Effects of compatibility of poly(L-lactic-acid) and thermoplastic polyurethane on mechanical property of blend fiber. Polym Adv Technol 2015;25(12):1406–11. 链接1

[16] Chisca S, Musteata VE, Sougrat R, Behzad AR, Nunes SP. Artificial 3D hierarchical and isotropic porous polymeric materials. Sci Adv 2018;4(5): eaat0713.

[17] Pittenger B, Erina N, Su C. Quantitative mechanical property mapping at the nanoscale with PeakForce QNM. Report. Santa Barbara: Bruker Nano Surfaces Division; 2010. 链接1

[18] Zhang G, Wu T, Lin W, Tan Y, Chen R, Huang Z, et al. Preparation of polymer/clay nanocomposites via melt intercalation under continuous elongation flow. Compos Sci Technol 2017;145:157–64. 链接1

[19] Qu J, Zhang G, Yin X, inventors; South China University of Technology, Guangzhou Huaxinke Enterprise Co., assignees. Volume pulsed deformation plasticating and conveying method and device by eccentric rotor. United States patent US 20170080619. 2017 Mar 23.

[20] Zhou S, Huang H, Ji X, Yan D, Zhong G, Hsiao BS, et al. Super-robust polylactide barrier films by building densely oriented lamellae incorporated with ductile in situ nanofibrils of poly (butylene adipate-co-terephthalate). ACS Appl Mater Interfaces 2016;8(12):8096–109. 链接1

[21] Thompson DW. On growth and form. New York: Dover Publications; 1942. 链接1

[22] Shin K, Obukhov S, Chen JT, Huh J, Hwang Y, Mok S, et al. Enhanced mobility of confined polymers. Nat Mater 2007;6(12):961–5. 链接1

[23] Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 2007;6(4):278–82. 链接1

[24] Ritchie RO. The conflicts between strength and toughness. Nat Mater 2011;10 (11):817–22. 链接1

[25] Wang Y, Chen M, Zhou F, Ma En. High tensile ductility in a nanostructured metal. Nature 2002;419(6910):912–5. 链接1

相关研究