期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第8卷 第1期 doi: 10.1016/j.eng.2021.03.026

利用cyp17a1缺失的伪雄鲤成功构建全雌鲤群体

a State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
b College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
c College of Fisheries, Huazhong Agriculture University, Wuhan 430070, China
d HAID Research institute, HAID group, Guangzhou 511400, China
e The Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China

收稿日期: 2021-01-07 修回日期: 2021-03-14 录用日期: 2021-03-15 发布日期: 2021-08-13

下一篇 上一篇

摘要

部分养殖鱼类存在两性生长异形的表型,因此,构建相应单性别养殖群体对水产养殖产量的提升具有产业应用价值。迄今为止,采用激素活性物质诱导产生性反转亲本是水产养殖业构建单性别群体最普遍使用的方法。本研究针对雌鲤生长快于雄鲤的两性生长异形的特性,以cyp17a1 为靶点进行了CRISPR/Cas9介导的基因编辑操作,利用cyp17a1 敲除后形成的伪雄鲤,成功构建了全雌鲤群体。首先,我们发现无论遗传性别型为XX还是XY,其cyp17a1 缺失鲤个体性腺均发育为精巢,并能正常产精。其次,利用确定的雄性特异DNA分子标记,筛选到cyp17a1 -/- XX伪雄个体,其具有正常的精巢发育和精子发生。将其与野生型雌鲤杂交,在8 月龄时检测后代性别,发现100%为雌性。将全雌群体和对照组雌雄混合群体各500 尾进行同塘生长对比养殖,至8 月龄或12 月龄时随机抽样检测,发现cyp17a1杂合突变雌鲤体重比同塘性别混养对照组分别高6.60%或32.66%。因此,本研究首次成功地利用基因工程技术对单基因位点进行操作,创制了全雌群体,实现了对雌鲤生长快的两性生长异形特性的应用,提升了养殖产量。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Sun Y, Zhu Z. Designing future farmed fishes using genome editing. Sci China Life Sci 2019;62(3):420–2. 链接1

[ 2 ] Zhai G, Shu T, Xia Y, Lu Y, Shang G, Jin X, et al. Characterization of sexual trait development in cyp17a1-deficient zebrafish. Endocrinology 2018;159 (10):3549–62.

[ 3 ] Tang H, Chen Y, Liu Y, Yin Y, Li G, Guo Y, et al. New insights into the role of estrogens in male fertility based on findings in aromatase-deficient zebrafish. Endocrinology 2017;158(9):3042–54.

[ 4 ] Fenske M, Segner H. Aromatase modulation alters gonadal differentiation in developing zebrafish (Danio rerio). Aquat Toxicol 2004;67(2):105–26. 链接1

[ 5 ] Jiang M, Wu X, Chen K, Luo H, Yu W, Jia S, et al. Production of YY supermale and XY physiological female common carp for potential eradication of this invasive species. J World Aquacult Soc 2018;49(2):315–27. 链接1

[ 6 ] Singh AK. Introduction of modern endocrine techniques for the production of monosex population of fishes. Gen Comp Endocrinol 2013;181:146–55. 链接1

[ 7 ] Hoga CA, Almeida FL, Reyes FGR. A review on the use of hormones in fish farming: analytical methods to determine their residues. CYTA J Food 2018;16 (1):679–91. 链接1

[ 8 ] Brown EE, Baumann H, Conover DO. Temperature and photoperiod effects on sex determination in a fish. J Exp Mar Biol Ecol 2014;461:39–43. 链接1

[ 9 ] Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences. Aquaculture 2002;208(3–4):191–364. 链接1

[10] Kocour M, Linhart O, Gela D, Rodina M. Growth performance of all-female and mixed-sex common carp Cyprinus carpio L. Populations in the central Europe climatic conditions. J World Aquacult Soc 2005;36(1):103–13. 链接1

[11] Wu CJ, Gui JF. Fish genetics and breeding engineering. Shanghai: Shanghai Scientific and Technical Publishers; 1999. Chinese. 链接1

[12] Wu C, Chen R, Ye Y, Ke H. Investigation on the carp gynogenesis with reference to establishing a pure line. Acta Genet Sin 1981;8(1):50–5. 链接1

[13] Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, et al. DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 2002;417(6888):559–63. 链接1

[14] Myosho T, Otake H, Masuyama H, Matsuda M, Kuroki Y, Fujiyama A, et al. Tracing the emergence of a novel sex-determining gene in medaka, Oryzias luzonensis. Genetics 2012;191(1):163–70.

[15] Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin-I T, et al. Cooption of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat Commun 2014;5:4157. 链接1

[16] Li M, Sun Y, Zhao J, Shi H, Zeng S, Ye K, et al. A tandem duplicate of antiMüllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in nile tilapia, Oreochromis niloticus. Plos Genet 2015;11(11):e1005678. 链接1

[17] Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, et al. A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci USA 2012;109(8):2955–9. 链接1

[18] Kamiya T, Kai W, Tasumi S, Oka A, Matsunaga T, Mizuno N, et al. A transspecies missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (fugu). PLoS Genet 2012;8(7):e1002798. 链接1

[19] Reichwald K, Petzold A, Koch P, Downie B, Hartmann N, Pietsch S, et al. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 2015;163(6):1527–38. 链接1

[20] Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet 2014;46(3):253–60. 链接1

[21] Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, et al. A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias latipes. Proc Natl Acad Sci USA 2002;99(18):11778–83. 链接1

[22] Yano A, Guyomard R, Nicol B, Jouanno E, Quillet E, Klopp C, et al. An immunerelated gene evolved into the master sex-determining gene in rainbow trout, Oncorhynchus mykiss. Curr Biol 2012;22(15):1423–8. 链接1

[23] Matsuda M. Sex determination in the teleost medaka, Oryzias latipes. Annu Rev Genet 2005;39(1):293–307. 链接1

[24] Sato T, Suzuki A, Shibata N, Sakaizumi M, Hamaguchi S. The novel mutant scl of the medaka fish, Oryzias latipes, shows no secondary sex characters. Zool Sci 2008;25(3):299–306. 链接1

[25] Zhai G, Shu T, Xia Y, Jin X, He J, Yin Z. Androgen signaling regulates the transcription of anti-Mullerian hormone via synergy with SRY-related protein SOX9A. Sci Bull 2017;62(3):197–203. 链接1

[26] Shu T, Zhai G, Pradhan A, Olsson PE, Yin Z. Zebrafish cyp17a1 knockout reveals that androgen-mediated signaling is important for male brain sex differentiation. Gen Comp Endocr 2020;295:113490. 链接1

[27] Wilson CA, High SK, McCluskey BM, Amores A, Yan YL, Titus TA, et al. Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 2014;198(3):1291–308.

[28] Han C, Zhu Q, Lu H, Wang C, Zhou X, Peng C, et al. Screening and characterization of sex-specific markers developed by a simple NGS method in mandarin fish (Siniperca chuatsi). Aquaculture 2020;527:735495. 链接1

[29] Lau ESW, Zhang Z, Qin M, Ge W. Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Sci Rep 2016;6:37357. 链接1

[30] McMillan SC, Géraudie J, Akimenko MA. Pectoral fin breeding tubercle clusters: a method to determine zebrafish sex. Zebrafish 2015;12(1):121–3. 链接1

[31] Chen J, Wang Y, Yue Y, Xia X, Du Q, Chang Z. A novel male-specific DNA sequence in the common carp, Cyprinus carpio. Mol Cell Probes 2009;23(5):235–9. 链接1

[32] Chen J, Du Q, Yue Y, Dang B, Chang Z. Screening and identification of malespecific DNA fragments in common carps Cyprinus carpio using suppression subtractive hybridization. J Fish Biol 2010;77(2):403–13. 链接1

[33] Xiao J, Zou T, Chen L, Liu S, Xiao J, Zhang H, et al. Microsatellite analysis of different ploidy offspring of artificial gynogenesis in Cyprinus carpio. J Fish Biol 2011;78(1):150–65.

[34] Jiang M, Jia S, Chen J, Chen K, Ma W, Wu X, et al. Timing of gonadal development and dimorphic expression of sex-related genes in gonads during early sex differentiation in the Yellow River carp. Aquaculture 2020;518:734825. 链接1

[35] Xu D, Yang F, Chen R, Lou B, Zhan W, Hayashida T, et al. Production of neomales from gynogenetic yellow drum through 17a-methyltestosterone immersion and subsequent application for the establishment of all-female populations. Aquaculture 2018;489:154–61. 链接1

[36] Babiak J, Babiak I, van Nes S, Harboe T, Haugen T, Norberg B. Induced sex reversal using an aromatase inhibitor, fadrozole, in Atlantic halibut (Hippoglossus hippoglossus L.). Aquaculture 2012;324–325:276–80. 链接1

[37] Liu S, Xu P, Liu X, Guo D, Chen X, Bi S, et al. Production of neomale mandarin fish Siniperca chuatsi by masculinization with orally administered 17amethyltestosterone. Aquaculture 2021;530:735904. 链接1

[38] Haffray P, Petit V, Guiguen Y, Quillet E, Rault P, Fostier A. Successful production of monosex female brook trout Salvelinus fontinalis using gynogenetic sex reversed males by a combination of methyltestosterone immersion and oral treatments. Aquaculture 2009;290(1–2):47–52. 链接1

[39] Shen ZG, Fan QX, Yang W, Zhang YL, Wang HP. Effects of 17amethyltestosterone and aromatase inhibitor letrozole on sex reversal, gonadal structure, and growth in yellow catfish pelteobagrus fulvidraco. Biol Bull 2015;228(2):108–17. 链接1

[40] Luckenbach JA, Fairgrieve WT, Hayman ES. Establishment of monosex female production of sablefish (Anoplopoma fimbria) through direct and indirect sex control. Aquaculture 2017;479:285–96. 链接1

[41] Crowder CM, Lassiter CS, Gorelick DA. Nuclear androgen receptor regulates testes organization and oocyte maturation in zebrafish. Endocrinology 2018;159(2):980–93. 链接1

[42] Tang H, Chen Y, Wang L, Yin Y, Li G, Guo Y, et al. Fertility impairment with defective spermatogenesis and steroidogenesis in male zebrafish lacking androgen receptor. Biol Reprod 2018;98(2):227–38.

[43] Yu G, Zhang D, Liu W, Wang J, Liu X, Zhou C, et al. Zebrafish androgen receptor is required for spermatogenesis and maintenance of ovarian function. Oncotarget 2018;9(36):24320–34. 链接1

[44] Li N, Oakes JA, Storbeck KH, Cunliffe VT, Krone NP. The P450 side-chain cleavage enzyme Cyp11a2 facilitates steroidogenesis in zebrafish. J Endocrinol 2020;244(2):309–21. 链接1

[45] Oakes JA, Barnard L, Storbeck KH, Cunliffe VT, Krone NP. 11b-hydroxylase loss disrupts steroidogenesis and reproductive function in zebrafish. J Endocrinol 2020;247(2):197–212. 链接1

[46] Liu Y, Yao ZX, Bendavid C, Borgmeyer C, Han Z, Cavalli LR, et al. Haploinsufficiency of cytochrome P450 17a-hydroxylase/17,20 lyase (CYP17) causes infertility in male mice. Mol Endocrinol 2005;19(9):2380–9. 链接1

[47] New MI. Inborn errors of adrenal steroidogenesis. Mol Cell Endocrinol 2003;211(1–2):75–83. 链接1

[48] Yanase T. 17a-hydroxylase/17, 20-lyase defects. J Steroid Biochem Mol Biol 1995;53(1–6):153–7. 链接1

[49] Kater CE, Biglieri EG. Disorders of steroid 17a-hydroxylase deficiency. Endocrinol Metab Clin North Am 1994;23(2):341–57. 链接1

[50] Yu F, Xiao J, Liang X, Liu S, Zhou G, Luo K, et al. Rapid growth and sterility of the growth hormone gene transgenic triploid carps. Sci Bull 2011;56(16):1679–84. 链接1

相关研究