期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第10卷 第3期 doi: 10.1016/j.eng.2021.04.016

用于个人降温和保暖的具有定制热传导和热辐射特性的双功能非对称织物

a Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
b Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, CA 94025, USA

收稿日期: 2021-01-18 修回日期: 2021-03-30 录用日期: 2022-04-30 发布日期: 2021-05-28

下一篇 上一篇

摘要

为了让人体感到热舒适,同时节约能源,个人热管理正逐渐成为一种颇有前景的策略。通过更好地控制人体散热,个人热管理可以实现有效的个人降温和保暖。本文提出了一种简单的表面改性方法,在商用织物的基础上定制热传导和热辐射特性,以便更好地管理从人体到环境的整个传热路径。本文对一种同时具有降温和保暖效果的双功能非对称织物(BAF)进行论证。凭借粗糙度不对称和表面改性等优点,BAF在降温模式下通过增强热传导和热辐射表现出显著的降温效果;在保暖模式下,两条路径的散热都减少,从而实现个人保暖。结果表明,在BAF的降温和保暖模式下测得的皮肤温差可达4.6 ℃,表明一件BAF衣服可以扩大人体的热舒适区。希望本研究可为用于个人热管理的织物的设计提供新的视角,并为现有的用于个人降温和保暖的织物的简单改性提供新的解决方案。

补充材料

图片

图2

图3

图4

参考文献

[ 1 ] Xiong J, Lian Z, Zhou X, You J, Lin Y. Effects of temperature steps on human health and thermal comfort. Build Environ 2015;94:144–54. 链接1

[ 2 ] Djongyang N, Tchinda R, Njomo D. Thermal comfort: a review paper. Renew Sustain Energy Rev 2010;14(9):2626–40. 链接1

[ 3 ] Goldstein LS, Dewhirst MW, Repacholi M, Kheifets L. Summary, conclusions and recommendations: adverse temperature levels in the human body. Int J Hyperthermia 2003;19(3):373–84. 链接1

[ 4 ] Desforges JF, Simon HB. Hyperthermia. N Engl J Med 1993;329(7):483–7. 链接1

[ 5 ] Sosnowski P, Mikrut K, Krauss H. Hypothermia–mechanism of action and pathophysiological changes in the human body. Postepy Hig Med Dosw 2015;69:69–79. Polish. 链接1

[ 6 ] Chan APC, Yi W. Heat stress and its impacts on occupational health and performance. Indoor Built Environ 2016;25(1):3–5. 链接1

[ 7 ] Hoyt T, Arens E, Zhang H. Extending air temperature setpoints: simulated energy savings and design considerations for new and retrofit buildings. Build Environ 2015;88:89–96. 链接1

[ 8 ] Sadineni SB, Madala S, Boehm RF. Passive building energy savings: a review of building envelope components. Renew Sustain Energy Rev 2011;15 (8):3617–31. 链接1

[ 9 ] Yang L, Yan H, Lam JC. Thermal comfort and building energy consumption implications—a review. Appl Energy 2014;115:164–73. 链接1

[10] Zhang XA, Yu S, Xu B, Li M, Peng Z, Wang Y, et al. Dynamic gating of infrared radiation in a textile. Science 2019;363(6427):619–23. 链接1

[11] Tong JK, Huang X, Boriskina SV, Loomis J, Xu Y, Chen G. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2015;2(6):769–78. 链接1

[12] Hsu PC, Liu X, Liu C, Xie X, Lee HR, Welch AJ, et al. Personal thermal management by metallic nanowire-coated textile. Nano Lett 2015;15 (1):365–71. 链接1

[13] Peng Y, Cui Y. Advanced textiles for personal thermal management and energy. Joule 2020;4(4):724–42. 链接1

[14] Yang B, Ding X, Wang F, Li A. A review of intensified conditioning of personal micro-environments: moving closer to the human body. Energy Built Environ 2021;2(3):260–70. 链接1

[15] Ghahramani A, Zhang K, Dutta K, Yang Z, Becerik-Gerber B. Energy savings from temperature setpoints and deadband: quantifying the influence of building and system properties on savings. Appl Energy 2016;165:930–42. 链接1

[16] Yu W. Achieving comfort in intimate apparel. In: Song G, editor. Improving comfort in clothing. Cambridge: Woodhead Publishing Limited; 2011. p. 427–48. 链接1

[17] Hsu PC, Song AY, Catrysse PB, Liu C, Peng Y, Xie J, et al. Radiative human body cooling by nanoporous polyethylene textile. Science 2016;353 (6303):1019–23. 链接1

[18] Peng Y, Chen J, Song AY, Catrysse PB, Hsu PC, Cai L, et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat Sustain 2018;1(2):105–12. 链接1

[19] Cai L, Peng Y, Xu J, Zhou C, Zhou C, Wu P, et al. Temperature regulation in colored infrared-transparent polyethylene textiles. Joule 2019;3(6):1478–86. 链接1

[20] Cai L, Song AY, Li W, Hsu PC, Lin D, Catrysse PB, et al. Spectrally selective nanocomposite textile for outdoor personal cooling. Adv Mater 2018;30 (35):1802152. 链接1

[21] Cai L, Song AY, Wu P, Hsu PC, Peng Y, Chen J, et al. Warming up human body by nanoporous metallized polyethylene textile. Nat Commun 2017;8 (1):496. 链接1

[22] Hsu PC, Liu C, Song AY, Zhang Ze, Peng Y, Xie J, et al. A dual-mode textile for human body radiative heating and cooling. Sci Adv 2017;3(11): e1700895. 链接1

[23] Abbas A, Zhao Y, Wang X, Lin T. Cooling effect of MWCNT-containing composite coatings on cotton fabrics. J Textil Inst 2013;104(8):798–807. 链接1

[24] Manasoglu G, Celen R, Kanik M, Ulcay Y. Electrical resistivity and thermal conductivity properties of graphene-coated woven fabrics. J Appl Polym Sci 2019;136(40):48024. 链接1

[25] Gao T, Yang Z, Chen C, Li Y, Fu K, Dai J, et al. Three-dimensional printed thermal regulation textiles. ACS Nano 2017;11(11):11513–20. 链接1

[26] Cui Y, Gong H, Wang Y, Li D, Bai H. A Thermally insulating textile inspired by polar bear hair. Adv Mater 2018;30(14):1706807. 链接1

[27] Wang Z, Zhong Y, Wang S. A new shape factor measure for characterizing the cross-section of profiled fiber. Text Res J 2012;82(5):454–62. 链接1

[28] Jabbari M, Åkesson D, Skrifvars M, Taherzadeh MJ. Novel lightweight and highly thermally insulative silica aerogel-doped poly(vinyl chloride)-coated fabric composite. J Reinf Plast Compos 2015;34(19):1581–92. 链接1

[29] Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007;318(5849):426–30. 链接1

[30] Hsu PC, Kong D, Wang S, Wang H, Welch AJ, Wu H, et al. Electrolessly deposited electrospun metal nanowire transparent electrodes. J Am Chem Soc 2014;136(30):10593–6. 链接1

[31] ASTM International. E96/E96M-16: Standard test methods for water vapor transmission of materials. ASTM standards. West Conshohocken: American Society of Testing Materials International; 2016..

[32] ASTM International. D737-18: Standard test method for air permeability of textile fabrics. West Conshohocken: American Society of Testing Materials International; 2018..

[33] Woods SI, Jung TM, Sears DR, Yu J. Emissivity of silver and stainless steel from 80K to 300K: application to ITER thermal shields. Cryogenics 2014;60:44–8. 链接1

[34] Wen CD, Mudawar I. Modeling the effects of surface roughness on the emissivity of aluminum alloys. Int J Heat Mass Transf 2006;49(23- 24):4279–89. 链接1

[35] Fragopoulou A, Institutet K, National M. Infrared thermography imaging: evaluating surface emissivity and skin thermal response to IR heating infrared thermography imaging. e-J Sci Technol 2016;3:9–14. 链接1

相关研究