期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第19卷 第12期 doi: 10.1016/j.eng.2021.04.025

步行激励下大跨度钢-混凝土空心板组合梁振动舒适度研究

a School of Civil Engineering & Key Laboratory of New Technology for Construction of Cities in Mountain Area, Ministry of Education, Chongqing University, Chongqing 400045, China
b Central-South Architectural Design Institute Co., Ltd., Wuhan 430071, China
c Department of Civil Engineering, The Pennsylvania State University, PA 17057, USA

收稿日期: 2020-09-29 修回日期: 2021-02-28 录用日期: 2021-04-06 发布日期: 2021-08-06

下一篇 上一篇

摘要

大跨度预制钢-混凝土空心板组合梁(CBHCS)是一种新型的楼板结构,可用于各种大跨度结构。然而,人为引起的振动会对此类结构的使用产生影响。为了减轻振动,需要探究由人引起的步行力与楼板状态之间的关系。本文首先使用测力板获取了25 名测试者的150 个步行力,确定了单步行走的傅里叶级数中的动态载荷系数和相位角。其次,对7 个CBHCS试样进行了行走测试,获取了模态振型、固有频率、阻尼比和加速度等基本动态特性。CBHCS楼板系统通常表现出高频(>10 Hz)和低阻尼(阻尼比低于2%)的特性。本文还使用有限元方法进行了灵敏度研究,以研究CBHCS楼板系统的振动性能,考虑了楼板厚度、
钢梁类型、接触时间和人体重量。最后,本文推导了基频和峰值加速度的解析表达式,与实验结果吻合较好,具有实际的应用价值。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Girhammar UA, Pajari M. Tests and analysis on shear strength of composite slabs of hollow core units and concrete topping. Constr Build Mater 2008;22(8):1708‒22. 链接1

[ 2 ] Ibrahim IS, Elliott KS, Abdullah R, Kueh ABH, Sarbini NN. Experimental study on the shear behaviour of precast concrete hollow core slabs with concrete topping. Eng Struct 2016;125:80‒90. 链接1

[ 3 ] Baran E. Effects of cast-in-place concrete topping on flexural response of precast concrete hollow-core slabs. Eng Struct 2015;98:109‒17. 链接1

[ 4 ] Kankeri P, Prakash SS. Experimental evaluation of bonded overlay and NSM GFRP bar strengthening on flexural behavior of precast prestressed hollow core slabs. Eng Struct 2016;120:49‒57. 链接1

[ 5 ] Lam D, Elliott KS, Nethercot DA. Steel-concrete composite construction with precast concrete hollow core floor. In: Proceedings of The Second International Conference on Advances in Steel Structures; 1999 Dec 15‍‒‍17; Hong Kong, China. Amsterdam: Elsevier; 1999. p. 459‒66. 链接1

[ 6 ] Lam D, Elliott KS, Nethercot DA. Experiments on composite steel beams with precast concrete hollow core floor slabs. Proc Inst Civ Eng, Struct Build 2000;140(2):127‒38. 链接1

[ 7 ] Lam D, Elliott KS, Nethercot DA. Parametric study on composite steel beams with precast concrete hollow core floor slabs. J Construct Steel Res 2000;54(2):283‒304. 链接1

[ 8 ] Lam D, Nip TF. Effects of transverse reinforcement on composite beam with precast hollow core slabs. In: Proceedings of the Third International Conference on Advances in Steel Structures; 2002 Dec 9‍‒‍11; Hong Kong, China. Amsterdam: Elsevier; 2002. p. 503‒10. 链接1

[ 9 ] Lam D. Capacities of headed stud shear connectors in composite steel beams with precast hollowcore slabs. J Construct Steel Res 2007;63(9):1160‒74. 链接1

[10] Aguado JV, Espinos A, Hospitaler A, Ortega J, Romero ML. Influence of reinforcement arrangement in flexural fire behavior of hollow core slabs. Fire Saf J 2012;53:72‒84. 链接1

[11] Aguado JV, Albero V, Espinos A, Hospitaler A, Romero ML. A 3D finite element model for predicting the fire behavior of hollow-core slabs. Eng Struct 2016;108:12‒27. 链接1

[12] Jendzelovsky N, Zabakova Vrablova K. Comparison of natural frequencies of hollow core slabs. Appl Mech Mater 2015;769:225‒8. 链接1

[13] Marcos LK, Carrazedo R. Parametric study on the vibration sensitivity of hollow-core slabs floors. In: Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014; 2014 Jun 30‍‒‍Jul 2; Porto, Portugal. p.1095‒102.

[14] Liu F, Battini JM, Pacoste C, Granberg A. Experimental and numerical dynamic analyses of hollow core concrete floors. Structures 2017;12:286‒97. 链接1

[15] Harper FC. The mechanics of walking. Res Appl Ind 1962;15(1):23‒8.

[16] Blanchard J, Davies BL, Smith JW. Design criteria and analysis for dynamic loading of footbridges. In: Proceeding of a Symposium on Dynamic Behaviour of Bridges at the Transport and Road Research Laboratory; 1977 May 19; Crowthorne, England. Washington, DC: TRID; 1977. p. 90‒106.

[17] Allen DE, Murray TM. Design criterion for vibrations due to walking. Eng J 1993;30(4):117‒29.

[18] ivanović SŽ, Pavić A, Reynolds P. Probability-based prediction of multi-mode vibration response to walking excitation. Eng Struct 2007;29(6):942‒54. 链接1

[19] Chen J, Peng Y, Wang L. Experimental investigation and mathematical modeling of single footfall load using motion capture technology. China Civil Eng J 2014;47(3):79‒87. Chinese.

[20] Chen J, Ding G, ivanović SŽ. Stochastic single footfall trace model for pedestrian walking load. Int J Struct Stab Dyn 2019;19(03):1950029. 链接1

[21] Ebrahimpour A, Hamam A, Sack RL, Patten WN. Measuring and modeling dynamic loads imposed by moving crowds. J Struct Eng 1996;122(12):1468‒74. 链接1

[22] EN 1994-1-1. Euro Code 4. Design of composite steel and concrete structures-Part 1-1: General rules and rules for buildings. European standard. Brussels: European Committee for Standardization; 2004. 链接1

[23] DHDAS software [Internet]. Jingjiang: Donghua Testing Technology; c2021 [cited 2020 Sep 29]. Available from: http://www.dhtest.com/dhdasrj. 链接1

[24] ISO 2631-2. Mechanical vibration and shock-Evaluation of human exposure to whole-body vibration—part 2: vibration in buildings (1 Hz to 80 Hz). ISO standard. Geneva: International Organization for Standardization; 2003.

[25] Grubbs FE. Procedures for detecting outlying observations in samples. Technometrics 1969;11(1):1‒21. 链接1

[26] Altunisik AC, Bayraktar A, Sevim B, Özdemir H. Experimental and analytical system identification of Eynel arch type steel highway bridge. J Construct Steel Res 2011;67(12):1912‒21. 链接1

[27] Abaqus, Inc. Abaqus analysis user’s manual version 6.14. Boston: Dassault Systemes Simulia Corp., USA; 2014.

[28] Bai J, Chen H, Zhao J, Liu M, Jin S. Seismic design and subassemblage tests of buckling-restrained braced RC frames with shear connector gusset connections. Eng Struct 2021;234:112018. 链接1

[29] Li J, Zhang R, Liu J, Cao L, Chen YF. Determination of the natural frequencies of a prestressed cable RC truss floor system. Measurement 2018;122:582‒90. 链接1

[30] Murray T, Allen D, Ungar E, Davis DB. Floor vibrations due to human activities: design guide 11. 2nd ed. Chicago: American Institute of Steel Construction; 2016.

[31] Zhou X, Cao L, Chen YF, Liu J, Li J. Experimental and analytical studies on the vibration serviceability of pre-stressed cable RC truss floor systems. J Sound Vibrat 2016;361:130‒47. 链接1

相关研究