期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第11卷 第4期 doi: 10.1016/j.eng.2021.05.021

利用改性纳米二氧化硅在页岩表面构建层次结构疏水表面强化钻井工程中的井壁稳定性

a Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, China
b School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
c CNPC Engineering Technology R&D Co. Ltd., Beijing 102206, China

收稿日期: 2021-01-18 修回日期: 2021-05-16 录用日期: 2021-05-28 发布日期: 2021-12-15

下一篇 上一篇

摘要

井壁稳定性对于油气勘探开发过程中的安全高效钻井至关重要。本文介绍了一种可以在水基钻井液钻井过程中强化井壁稳定性的疏水型纳米二氧化硅(HNS),采用线性膨胀实验、滚动回收率实验和抗压强度测试研究了其井壁强化性能,利用zeta 电位、粒径、接触角、表面张力等测试和扫描电子显微镜(SEM)观察分析了井壁强化机理。此外,利用接触角法计算了HNS处理前后页岩表面自由能的变化。实验结果表明,HNS在抑制页岩膨胀和分散方面表现出良好的性能,优于常用的页岩抑制剂KCl和聚胺。与水相比,HNS可使膨润土试样的线性膨胀高度降低20%,对强水化页岩的回收率提高11.53 倍。更重要的是,HNS可有效防止页岩强度的降低。机理研究表明,HNS良好的井壁强化性能可归因于三个方面:首先,带正电荷的HNS通过静电吸附中和部分黏土表面的负电荷,从而抑制渗透水化作用;其次,HNS在页岩表面吸附后可形成具有微纳米层次结构的“荷叶状”表面,显著增加页岩表面的水相接触角,大幅度降低了页岩表面自由能,从而抑制表面水化;再次,毛细作用的减弱和页岩孔隙的有效封堵减少了水的侵入,对井壁稳定有利。本文所述的方法对于抑制页岩的表面水化和渗透水化提供了一种新途径。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

参考文献

[ 1 ] Zeynali ME. Mechanical and physico-chemical aspects of wellbore stability during drilling operations. J Petrol Sci Eng 2012;82–83:120–4. 链接1

[ 2 ] Clarkson CR, Solano N, Bustin RM, Bustin AMM, Chalmers GRL, He L, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 2013;103:606–16. 链接1

[ 3 ] Liu K, Ostadhassan M, Zhou J, Gentzis T, Rezaee R. Nanoscale pore structure characterization of the Bakken shale in the USA. Fuel 2017;209:567–78. 链接1

[ 4 ] Li C, Kong L, Ostadhassan M, Gentzis T. Nanoscale pore structure characterization of tight oil formation: a case study of the Bakken formation. Energy Fuels 2019;33(7):6008–19. 链接1

[ 5 ] Shadizadeh SR, Moslemizadeh A, Dezaki AS. A novel nonionic surfactant for inhibiting shale hydration. Appl Clay Sci 2015;118:74–86. 链接1

[ 6 ] Rao SM, Thyagaraj T, Raghuveer Rao P. Crystalline and osmotic swelling of an expansive clay inundated with sodium chloride solutions. Geotech Geol Eng 2013;31(4):1399–404. 链接1

[ 7 ] Anderson RL, Ratcliffe I, Greenwell HC, Williams PA, Cliffe S, Coveney PV. Clay swelling—a challenge in the oilfield. Earth Sci Rev 2010;98(3–4):201–16. 链接1

[ 8 ] Wilson MJ, Wilson L. Clay mineralogy and shale instability: an alternative conceptual analysis. Clay Miner 2014;49(2):127–45. 链接1

[ 9 ] Sun L, Tanskanen JT, Hirvi JT, Kasa S, Schatz T, Pakkanen TA. Molecular dynamics study of montmorillonite crystalline swelling: roles of interlayer cation species and water content. Chem Phys 2015;455:23–31. 链接1

[10] Davis A, Yeong YH, Steele A, Loth E, Bayer IS. Nanocomposite coating superhydrophobicity recovery after prolonged high-impact simulated rain. RSC Adv 2014;4(88):47222–6. 链接1

[11] Shi X, Wang L, Guo J, Su Q, Zhuo X. Effects of inhibitor KCl on shale expansibility and mechanical properties. Petroleum 2019;5(4):407–12. 链接1

[12] Gomez S, He W. Fighting wellbore instability: Customizing drilling fluids based on laboratory studies of shale-fluid interactions. In: the IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition; 2012 Jul 9; Tianjin, China; 2012.

[13] Zhang S, He Y, Chen Z, Sheng JJ, Fu L. Application of polyether amine, poly alcohol or KCl to maintain the stability of shales containing Na-smectite and Ca-smectite. Clay Miner 2018;53(1):29–39. 链接1

[14] Bai X, Wang H, Luo Y, Zheng X, Zhang X, Zhou S, et al. The structure and application of amine-terminated hyperbranched polymer shale inhibitor for water-based drilling fluid. J Appl Polym Sci 2017;134(46):45466. 链接1

[15] Xie G, Luo P, Deng M, Su J, Wang Z, Gong R, et al. Intercalation behavior of branched polyethyleneimine into sodium bentonite and its effect on rheological properties. Appl Clay Sci 2017;141:95–103. 链接1

[16] Huang X, Shen H, Sun J, Lv K, Liu J, Dong X, et al. Nanoscale laponite as a potential shale inhibitor in water-based drilling fluid for stabilization of wellbore stability and mechanism study. ACS Appl Mater Interfaces 2018;10 (39):33252–9. 链接1

[17] Shettigar RR, Misra NM, Patel K. Cationic surfactant (CTAB) a multipurpose additive in polymer-based drilling fluids. J Pet Explor Prod Technol 2018;8 (2):597–606. 链接1

[18] Lv K, Huang X, Li H, Sun J, Du W, Li M. Modified bio-surfactant cationic alkyl polyglycoside as an effective additive for inhibition of highly reactive shale. Energy Fuels 2020;34(2):1680–7. 链接1

[19] Yin S, Yan F. Improving the wellbore stability of shale formation with water activity regflation. Fresenius Environ Bull 2019;28:7492–501.

[20] Ismail AR, Mohd NMNA, Basir NF, Oseh JO, Ismail I, Blkoor SO. Improvement of rheological and filtration characteristics of water-based drilling fluids using naturally derived henna leaf and hibiscus leaf extracts. J Pet Explor Prod Technol 2020;10(8):3541–56. 链接1

[21] Huang W, Li X, Qiu Z, Jia J, Wang Y, Li X. Inhibiting the surface hydration of shale formation using preferred surfactant compound of polyamine and twelve alkyl two hydroxyethyl amine oxide for drilling. J Petrol Sci Eng 2017;159:791–8. 链接1

[22] Yue Y, Chen S, Wang Z, Yang X, Peng Y, Cai J, et al. Improving wellbore stability of shale by adjusting its wettability. J Petrol Sci Eng 2018;161:692–702. 链接1

[23] Chu Q, Lin L, Su J. Amidocyanogen silanol as a high-temperature-resistant shale inhibitor in water-based drilling fluid. Appl Clay Sci 2020;184:105396. 链接1

[24] Ahmad HM, Kamal MS, Murtaza M, Khan S, Al-Harthi M. Alteration of wettability and hydration properties of shale using ionic liquids in waterbased drilling fluids. In: the Abu Dhabi International Petroleum Exhibition & Conference; 2019 Nov 11; Abu Dhabi, UAE; 2019.

[25] Liang L, Luo D, Liu X, Xiong J. Experimental study on the wettability and adsorption characteristics of Longmaxi Formation shale in the Sichuan Basin, China. J Nat Gas Sci Eng 2016;33:1107–18. 链接1

[26] Liang L, Xiong J, Liu X. Experimental study on crack propagation in shale formations considering hydration and wettability. J Nat Gas Sci Eng 2015;23:492–9. 链接1

[27] API RP 13B-1: Recommended practice for field testing water-based drilling fluids. US standard. Washington, DC: American Petroleum Institute; 2019.

[28] Abe K, Takiguchi H, Tamada K. Dynamic contact angle measurement of Au (111) thiol self-assembled monolayers by the Wilhelmy Plate method. Langmuir 2000;16(5):2394–7. 链接1

[29] Gindl M, Sinn G, Gindl W, Reiterer A, Tschegg S. A comparison of different methods to calculate the surface free energy of wood using contact angle measurements. Colloids Surf A 2001;181(1–3):279–87. 链接1

[30] Wang P, Zhao T, Bian R, Wang G, Liu H. Robust superhydrophobic carbon nanotube film with lotus leaf mimetic multiscale hierarchical structures. ACS Nano 2017;11(12):12385–91. 链接1

[31] Bhushan B, Jung YC, Koch K. Self-cleaning efficiency of artificial superhydrophobic surfaces. Langmuir 2009;25(5):3240–8. 链接1

[32] Lafuma A, Quéré D. Superhydrophobic states. Nat Mater 2003;2(7):457–60. 链接1

相关研究