期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第20卷 第1期 doi: 10.1016/j.eng.2021.06.029

抗多种污染的仿海藻全亲水自漂浮太阳能光热蒸发器

a Frontier Science Center for Synthetic Biology & Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
b Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, Nankai University, Tianjin 300071, China
c State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China

收稿日期: 2021-01-05 修回日期: 2021-05-11 录用日期: 2021-06-15 发布日期: 2022-04-12

下一篇 上一篇

摘要

强亲水材料可以在太阳能驱动的海水蒸馏中实现快速的液态水运输和盐结晶溶解。然而,强亲水材料在水中饱和吸水,通常具有与水相近甚至大于水的密度,无法独立自漂浮,从而难以将热量集中在空气/水界面进行界面蒸馏。自然界中,具有内部微气泡的海藻可以漂浮在水面以保证吸收太阳能,从而进行光合作用。受此启发,本研究开发了一种全亲水自漂浮(SIFS)的太阳能光热蒸发器。蒸发器中密集填充的空心玻璃微球赋予蒸发器独立自漂浮和隔热的性能,不需要额外提供浮力支撑,能将热量集中在空气/水界面。两性离子磺基甜菜碱凝胶作为黏合剂和涂层,使蒸发器具有全亲水性质,从而保证持续的水运输,溶解潜在的盐结晶,克服油污染、微生物腐蚀和蛋白质吸附。凭借其独特的全亲水自漂浮性质和优异的抗污性能,该蒸发器有望为新型功能材料的设计和解决复杂环境下光热海水蒸馏的实际问题提供新的思路。

补充材料

图片

图1

图2

图3

图4

图5

参考文献

[ 1 ] Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science 2011;333(6043):712‒7. 链接1

[ 2 ] Gao M, Zhu L, Peh CK, Ho GW. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy Environ Sci 2019;12(3):841‒64. 链接1

[ 3 ] Wu X, Gao T, Han C, Xu J, Owens G, Xu H. A photothermal reservoir for highly efficient solar steam generation without bulk water. Sci Bull 2019;64(21):1625‒33. 链接1

[ 4 ] Zhu L, Gao M, Peh CK, Ho GW. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater Horiz 2018;5(3):323‒43. 链接1

[ 5 ] Zhang Y, Ravi SK, Tan SC. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation. Nano Energy 2019;65:104006. 链接1

[ 6 ] Wang Y, Wu X, Shao B, Yang X, Owens G, Xu H. Boosting solar steam generation by structure enhanced energy management. Sci Bull 2020;65(16):1380‒8. 链接1

[ 7 ] Hu X, Zhu J. Tailoring aerogels and related 3D macroporous monoliths for interfacial solar vapor generation. Adv Funct Mater 2020;30(3):1907234. 链接1

[ 8 ] Ni F, Qiu N, Xiao P, Zhang C, Jian Y, Liang Y, et al. Tillandsia-inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting. Angew Chem Int Ed Engl 2020;59(43):19237‒46. 链接1

[ 9 ] Xu Z, Zhang L, Zhao L, Li B, Bhatia B, Wang C, et al. Ultrahigh-efficiency desalination via a thermally-localized multistage solar still. Energy Environ Sci 2020;13(3):830‒9. 链接1

[10] Kim H, Yang S, Rao SR, Narayanan S, Kapustin EA, Furukawa H, et al. Water harvesting from air with metal‍‒‍organic frameworks powered by natural sunlight. Science 2017;356(6336):430‒4. 链接1

[11] Li T, Liu H, Zhao X, Chen G, Dai J, Pastel G, et al. Scalable and highly efficient mesoporous wood-based solar steam generation device: localized heat, rapid water transport. Adv Funct Mater 2018;28(16):1707134. 链接1

[12] Jiang M, Shen Q, Zhang J, An S, Ma S, Tao P, et al. Bioinspired temperature regulation in interfacial evaporation. Adv Funct Mater 2020;30(14):1910481. 链接1

[13] Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, et al. Solar steam generation by heat localization. Nat Commun 2014;5(1):4449. 链接1

[14] Shi L, Shi Y, Zhuo S, Zhang C, Aldrees Y, Aleid S, et al. Multi-functional 3D honeycomb ceramic plate for clean water production by heterogeneous photo-Fenton reaction and solar-driven water evaporation. Nano Energy 2019;60:222‒30. 链接1

[15] Ge J, Zong D, Jin Q, Yu J, Ding B. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions. Adv Funct Mater 2018;28(10):1705051. 链接1

[16] Yao Y, Lv T, Li N, Chen Z, Zhang C, Chen T. Selected functionalization of continuous graphene fibers for integrated energy conversion and storage. Sci Bull 2020;65(6):486‒95. 链接1

[17] Zhao F, Guo Y, Zhou X, Shi W, Yu G. Materials for solar-powered water evaporation. Nat Rev Mater 2020;5(5):388‒401. 链接1

[18] Gao B, Nakano S, Harada H, Miyamura Y, Sekiguchi T, Kakimoto K. Single-seed casting large-size monocrystalline silicon for high-efficiency and low-cost solar cells. Engineering 2015;1(3):378‒83. 链接1

[19] Nandakumar DK, Ravi SK, Zhang Y, Guo N, Zhang C, Tan SC. A super hygroscopic hydrogel for harnessing ambient humidity for energy conservation and harvesting. Energy Environ Sci 2018;11(8):2179‒87. 链接1

[20] Liang H, Liao Q, Chen N, Liang Y, Lv G, Zhang P, et al. Thermal efficiency of solar steam generation approaching 100% through capillary water transport. Angew Chem Int Ed Engl 2019;58(52):19041‒6. 链接1

[21] Xiao M, Wang S, Thaweesak S, Luo B, Wang L. Tantalum (oxy)nitride: narrow bandgap photocatalysts for solar hydrogen generation. Engineering 2017;3(3):365‒78. 链接1

[22] Zhang Y, Ravi SK, Vaghasiya JV, Tan SC. A barbeque-analog route to carbonize moldy bread for efficient steam generation. iScience 2018;3:31‒9. 链接1

[23] Hu X, Xu W, Zhou L, Tan Y, Wang Y, Zhu S, et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv Mater 2017;29(5):1604031. 链接1

[24] Zhang B, Song C, Liu C, Min J, Azadmanjiri J, Ni Y, et al. Molten salts promoting the “controlled carbonization” of waste polyesters into hierarchically porous carbon for high-performance solar steam evaporation. J Mater Chem A 2019;7(40):22912‒23. 链接1

[25] Yang M, Schäffler R, Repmann T, Orgassa K. Moisture absorption and desorption in an ionomer-based encapsulant: a type of self-breathing encapsulant for CIGS thin-film PV modules. Engineering 2020;6(12):1403‒7. 链接1

[26] Huang Q, Jiang F, Wang L, Yang C. Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 2017;3(3):318‒29. 链接1

[27] Chen C, Kuang Y, Hu L. Challenges and opportunities for solar evaporation. Joule 2019;3(3):683‒718. 链接1

[28] Liu H, Huang Z, Liu K, Hu X, Zhou J. Interfacial solar-to-heat conversion for desalination. Adv Energy Mater 2019;9(21):1900310. 链接1

[29] Zhang C, Liang HQ, Xu ZK, Wang Z. Harnessing solar-driven photothermal effect toward the water‒energy nexus. Adv Sci 2019;6(18):1900883. 链接1

[30] Zhang P, Li J, Lv L, Zhao Y, Qu L. Vertically aligned graphene sheets membrane for highly efficient solar thermal generation of clean water. ACS Nano 2017;11(5):5087‒93. 链接1

[31] He J, Zhang Z, Xiao C, Liu F, Sun H, Zhu Z, et al. High-performance salt-rejecting and cost-effective superhydrophilic porous monolithic polymer foam for solar steam generation. ACS Appl Mater Interfaces 2020;12(14):16308‒18. 链接1

[32] Wang F, Hu Z, Fan Y, Bai W, Wu S, Sun H, et al. Salt-rejection solar absorbers based on porous ionic polymers nanowires for desalination. Macromol Rapid Commun 2021;42(4):2000536. 链接1

[33] Ling N, Forsythe S, Wu Q, Ding Y, Zhang J, Zeng H. Insights into Cronobacter sakazakii biofilm formation and control strategies in the food industry. Engineering 2020;6(4):393‒405. 链接1

[34] He J, Fan Y, Xiao C, Liu F, Sun H, Zhu Z, et al. Enhanced solar steam generation of hydrogel composite with aligned channel and shape memory behavior. Compos Sci Technol 2021;204:108633. 链接1

[35] Dong Y, Wu ZS, Ren W, Cheng HM, Bao X. Graphene: a promising 2D material for electrochemical energy storage. Sci Bull 2017;62(10):724‒40. 链接1

[36] Han N, Liu K, Zhang X, Wang M, Du P, Huang Z, et al. Highly efficient and stable solar-powered desalination by tungsten carbide nanoarray film with sandwich wettability. Sci Bull 2019;64(6):391‒9. 链接1

[37] Ni G, Zandavi SH, Javid SM, Boriskina SV, Cooper TA, Chen G. A salt-rejecting floating solar still for low-cost desalination. Energy Environ Sci 2018;11(6):1510‒9. 链接1

[38] Xu N, Zhu P, Sheng Y, Zhou L, Li X, Tan H, et al. Synergistic tandem solar electricity‒water generators. Joule 2020;4(2):347‒58. 链接1

[39] Zeng Y, Yao J, Horri BA, Wang K, Wu Y, Li D, et al. Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy Environ Sci 2011;4(10):4074‒8. 链接1

[40] Sun C, Wen B, Bai B. Recent advances in nanoporous graphene membrane for gas separation and water purification. Sci Bull 2015;60(21):1807‒23. 链接1

[41] Li R, Zhang L, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 2017;11(4):3752‒9. 链接1

[42] Xu N, Li J, Wang Y, Fang C, Li X, Wang Y, et al. A water lily-inspired hierarchical design for stable and efficient solar evaporation of high-salinity brine. Sci Adv 2019;5(7):aaw7013. 链接1

[43] Ni G, Li G, Boriskina SV, Li H, Yang W, Zhang T, et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat Energy 2016;1(9):16126. 链接1

[44] Kane IA, Clare MA, Miramontes E, Wogelius R, Rothwell JJ, Garreau P, et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 2020;368(6495):1140‒5. 链接1

[45] Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, et al. Solar-driven interfacial evaporation. Nat Energy 2018;3(12):1031‒41. 链接1

[46] Guo Y, Zhou X, Zhao F, Bae J, Rosenberger B, Yu G. Synergistic energy nanoconfinement and water activation in hydrogels for efficient solar water desalination. ACS Nano 2019;13(7):7913‒9. 链接1

[47] Walsby AE, Booker MJ. Changes in buoyancy of a planktonic blue-green alga in response to light intensity. Br Phycol J 1980;15(4):311‒9. 链接1

[48] Bowen CC, Jensen TE. Blue-green algae: fine structure of the gas vacuoles. Science 1965;147(3664):1460‒2. 链接1

[49] Cohen-Bazire G, Kunisawa R, Pfennig N. Comparative study of the structure of gas vacuoles. J Bacteriol 1969;100(2):1049‒61. 链接1

[50] Zhao Y, Yu C, Lan H, Cao M, Jiang L. Improved interfacial floatability of superhydrophobic/superhydrophilic Janus sheet inspired by lotus leaf. Adv Funct Mater 2017;27(27):1701466. 链接1

[51] Geng H, Bai H, Fan Y, Wang S, Ba T, Yu C, et al. Unidirectional water delivery on a superhydrophilic surface with two-dimensional asymmetrical wettability barriers. Mater Horiz 2018;5(2):303‒8. 链接1

[52] Wen C, Guo H, Bai H, Xu T, Liu M, Yang J, et al. Beetle-inspired hierarchical antibacterial interface for reliable fog harvesting. ACS Appl Mater Interfaces 2019;11(37):34330‒7. 链接1

[53] Zhang L, Cao Z, Bai T, Carr L, Ella-Menye JR, Irvin C, et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 2013;31(6):553‒6. 链接1

[54] Phiri I, Eum KY, Kim JW, Choi WS, Kim SH, Ko JM, et al. Simultaneous complementary oil‍‒‍water separation and water desalination using functionalized woven glass fiber membranes. J Ind Eng Chem 2019;73:78‒86. 链接1

[55] Prakash I, Muralidharan P, Nallamuthu N, Satyanarayana N, Venkateswarlu M, Carnahan D. Preparation of NiAl2O4/SiO2 and Co2+-doped NiAl2O4/SiO2 nanocomposites by the sol-gel route. J Am Ceram Soc 2006;89(7):2220‒5. 链接1

[56] Prakash I, Nallamuthu N, Muralidharan P, Venkateswarlu M, Satyanarayana N. Synthesis of SiO2/CoFe2O4 nanocomposite by base catalyst assisted in-situ sol-gel process. AIP Conf Proc 2010;1276(1):227‒32. 链接1

[57] Cai Y, Lu Q, Guo X, Wang S, Qiao J, Jiang L. Salt-tolerant superoleophobicity on alginate gel surfaces inspired by seaweed (Saccharina japonica). Adv Mater 2015;27(28):4162‒8. 链接1

[58] He K, Duan H, Chen GY, Liu X, Yang W, Wang D. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil‒water separation membranes. ACS Nano 2015;9(9):9188‒98. 链接1

[59] Li C, Jiang D, Huo B, Ding M, Huang C, Jia D, et al. Scalable and robust bilayer polymer foams for highly efficient and stable solar desalination. Nano Energy 2019;60:841‒9. 链接1

[60] Hogan NJ, Urban AS, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas NJ. Nanoparticles heat through light localization. Nano Lett 2014;14(8):4640‒5. 链接1

[61] Wang JH. Self-diffusion coefficients of water. J Phys Chem 1965;69(12):4412. 链接1

[62] Zeng J, Wang Q, Shi Y, Liu P, Chen R. Osmotic pumping and salt rejection by polyelectrolyte hydrogel for continuous solar desalination. Adv Energy Mater 2019;9(38):1900552. 链接1

[63] Liu G, Xu J, Wang K. Solar water evaporation by black photothermal sheets. Nano Energy 2017;41:269‒84. 链接1

[64] Guo Y, Zhao F, Zhou X, Chen Z, Yu G. Tailoring nanoscale surface topography of hydrogel for efficient solar vapor generation. Nano Lett 2019;19(4): 2530‒6. 链接1

[65] Zhou J, Gu Y, Liu P, Wang P, Miao L, Liu J, et al. Development and evolution of the system structure for highly efficient solar steam generation from zero to three dimensions. Adv Funct Mater 2019;29(50):1903255. 链接1

[66] Miyazaki M, Fujii A, Ebata T, Mikami N. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 2004;304(5674):1134‒7. 链接1

[67] Fujii A, Mizuse K. Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters. Int Rev Phys Chem 2013;32(2):266‒307. 链接1

[68] Zhao F, Zhou X, Shi Y, Qian X, Alexander M, Zhao X, et al. Highly efficient solar vapour generation via hierarchically nanostructured gels. Nat Nanotechnol 2018;13(6):489‒95. 链接1

[69] World Health Organization. Guidelines for drinking-water quality. 4th Ed. Geneva: World Health Organization; 2011.

[70] Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Adv Mater 2015;27(1):15‒26. 链接1

[71] Mu P, Zhang Z, Bai W, He J, Sun H, Zhu Z, et al. Superwetting monolithic hollow-carbon-nanotubes aerogels with hierarchically nanoporous structure for efficient solar steam generation. Adv Energy Mater 2019;9(1):1802158. 链接1

[72] Wei Q, Becherer T, Angioletti-Uberti S, Dzubiella J, Wischke C, Neffe AT, et al. Protein interactions with polymer coatings and biomaterials. Angew Chem Int Ed Engl 2014;53(31):8004‒31. 链接1

[73] Jung YC Bhushan B. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir 2009;25(24):14165‒73. 链接1

[74] Malik A. Metal bioremediation through growing cells. Environ Int 2004;30(2):261‒78. 链接1

相关研究