期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第16卷 第9期 doi: 10.1016/j.eng.2021.07.031

实现“不可行”的共聚反应以构筑氮掺杂多孔碳的理想聚合物前驱体

State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Material (SICAM), College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China

收稿日期: 2020-03-02 修回日期: 2021-06-08 录用日期: 2021-07-27 发布日期: 2021-08-25

下一篇 上一篇

摘要

某些预想的概念验证反应虽可能产生具有新功能或新应用潜力的材料,但最终常被证明是不可实现的或从商业角度上是不可行的。为了在溶剂环境中探索未知反应的反应条件,科研人员已付出了大量的努力,也浪费了大量的精力。因为人们普遍相信通过将反应物溶解在溶剂中,可以提高反应物的活性,从而促进反应。本研究发现了一个反常现象:在不同溶剂环境下,1,3,5-三(氯甲基)-2,4,6-三甲基苯与三聚氰胺的共聚反应都是无法实现的,然而利用无溶剂法却可成功地实现该反应。通过第一性原理计算和分子动力学模拟,证明了溶剂反应不具备的两个决定性因素,即由副产物的及时释放所推动的反应平衡和活化单体分子在固相中的受限热运动却可基于无溶剂法实现。由于具有较高的芳香性和氮杂环含量,由无溶剂法得到的共聚物表现出良好的应用潜力,可作为制备氮掺杂多孔碳的前驱体,使氮掺杂多孔碳具有令人满意的碳产率、理想的残氮含量、理想的结构特性,与最近报道的其他代表性同类吸附剂相比,在二氧化碳捕获能力方面展现出竞争潜力。

图片

图1

图2

图3

图4

参考文献

[ 1 ] Walker TW, Chew AK, Li HX, Demir B, Zhang ZC, Huber GW, et al. Universal kinetic solvent effects in acid-catalyzed reactions of biomass-derived oxygenates. Energy Environ Sci 2018;11(3):617‍‒‍28. Corrected in: Energy Environ Sci 2018;11(6):1639. 链接1

[ 2 ] Zhou T, Song Z, Sundmacher K. Big data creates new opportunities for materials research: a review on methods and applications of machine learning for materials design. Engineering 2019;5(6):1017‒26. 链接1

[ 3 ] Sherwood J, Clark JH, Fairlamb IJS, Slattery JM. Solvent effects in palladium catalysed cross-coupling reactions. Green Chem 2019;21(9):2164‒213. 链接1

[ 4 ] Gao ZG, Rohani S, Gong JB, Wang JK. Recent developments in the crystallization process: toward the pharmaceutical industry. Engineering 2017;3(3):343‒53. 链接1

[ 5 ] Qi SC, Hayashi JI, Kudo S, Zhang L. Catalytic hydrogenolysis of kraft lignin to monomers at high yield in alkaline water. Green Chem 2017;19(11):2636‒45. Corrected in: Green Chem 2017;19(17); 4186. 链接1

[ 6 ] Wang YQ, Wu QM, Meng XJ, Xiao FS. Insights into the organotemplate-free synthesis of zeolite catalysts. Engineering 2017;3(4):567‒74. 链接1

[ 7 ] Yu L, Qian RR, Deng X, Wang F, Xu Q. Calcium-catalyzed reactions of element‒H bonds. Sci Bull 2018;63(15):1010‒6. 链接1

[ 8 ] Zhu Y, Ji Y, Ju Z, Yu K, Ferreira PJ, Liu Y, et al. Ultrafast intercalation enabled by strong solvent‒host interactions: understanding solvent effect at the atomic level. Angew Chem Int Ed Engl 2019;58(48):17205‒9. 链接1

[ 9 ] Savoo N, Laloo JZA, Rhyman L, Ramasami P, Bickelhaupt FM, Poater J. Activation strain analyses of counterion and solvent effects on the ion-pair SN 2 reaction of NH2- and CH3Cl. J Comput Chem 2020;41(4):317‒27. 链接1

[10] Tang WQ, Yu HP, Cai C, Zhao T, Lu CJ, Zhao SL, et al. Solvent effects on a derivative of 1,3,4-oxadiazole tautomerization reaction in water: a reaction density functional theory study. Chem Eng Sci 2020;213:115380. 链接1

[11] Ji X, Li Y, Zheng J, Liu Q. Solvent effects of ethyl methacrylate characterized by FTIR. Mater Chem Phys 2011;130(3):1151‒5. 链接1

[12] Feng C, Li Y, Yang D, Hu J, Zhang X, Huang X. Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem Soc Rev 2011;40(3):1282‒95. 链接1

[13] Uhrig D, Mays J. Synthesis of well-defined multigraft copolymers. Polym Chem 2011;2(1):69‒76. 链接1

[14] Zhang Q, Ko NR, Oh JK. Recent advances in stimuli-responsive degradable block copolymer micelles: synthesis and controlled drug delivery applications. Chem Commun 2012;48(61):7542‒52. 链接1

[15] Jennings J, He G, Howdle SM, Zetterlund PB. Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems. Chem Soc Rev 2016;45(18):5055‒84. 链接1

[16] Feng H, Lu X, Wang W, Kang NG, Mays JW. Block copolymers: synthesis, self-assembly, and applications. Polymers 2017;9(10):494. 链接1

[17] Hu JM, Zhang GY, Ge ZS, Liu SY. Stimuli-responsive tertiary amine methacrylate-based block copolymers: synthesis, supramolecular self-assembly and functional applications. Prog Polym Sci 2014;39(6):1096‒43. 链接1

[18] Wang MQ, Tang C, Ye C, Duan JJ, Li CM, Chen YM, et al. Engineering the nanostructure of molybdenum nitride nanodot embedded N-doped porous hollow carbon nanochains for rapid all pH hydrogen evolution. J Mater Chem A 2018;6(30):14734‒41. 链接1

[19] Zhu DZ, Jiang JX, Sun DM, Qian XY, Wang YW, Li LC, et al. A general strategy to synthesize high-level N-doped porous carbons via Schiff-base chemistry for supercapacitors. J Mater Chem A 2018;6(26):12334‒43. 链接1

[20] Li YP, Yang CH, Zheng FH, Ou X, Pan QC, Liu YZ, et al. High pyridine N-doped porous carbon derived from metal‒organic frameworks for boosting potassium-ion storage. J Mater Chem A 2018;6(37):17959‒66. 链接1

[21] Yang F, Wang J, Liu L, Zhang P, Yu W, Deng Q, et al. Synthesis of porous carbons with high N-content from shrimp shells for efficient CO2-capture and gas separation. ACS Sustain Chem Eng 2018;6(11):15550‒9. 链接1

[22] Qi SC, Liu Y, Peng AZ, Xue DM, Liu X, Liu XQ, et al. Fabrication of porous carbons from mesitylene for highly efficient CO2 capture: a rational choice improving the carbon loop. Chem Eng J 2019;361:945‒52. 链接1

[23] Peng AZ, Qi SC, Liu X, Xue DM, Peng SS, Yu GX, et al. N-doped porous carbons derived from a polymer precursor with a record-high N content: efficient adsorbents for CO2 capture. Chem Eng J 2019;372:656‒64. 链接1

[24] Xue DM, Qi SC, Zeng QZ, Lu RJ, Long JH, Luo C, et al. Fabrication of nitrogen-doped porous carbons derived from ammoniated copolymer precursor: record-high adsorption capacity for indole. Chem Eng J 2019;374:1005‒12. 链接1

[25] Xue DM, Qi SC, Liu X, Li YX, Liu XQ, Sun LB. N-doped porous carbons with increased yield and hierarchical pore structures for supercapacitors derived from an N-containing phenyl-riched copolymer. J Ind Eng Chem 2019;‍80:568‒75. 链接1

[26] Zhao JH, Shu Y, Zhang PF. Solid-state CTAB-assisted synthesis of mesoporous Fe3O4 and Au@Fe3O4 by mechanochemistry. Chin J Catal 2019;40(7):1078‒84. 链接1

[27] Shu Y, Chen H, Chen NQ, Duan XL, Zhang PF, Yang SZ, et al. A Principle for Highly Active Metal Oxide Catalysts via NaCl-Based Solid Solution. Chem 2020;6(7):1723‒41. 链接1

[28] Hou ST, Sun YH, Jiang XG, Zhang PF. Nitrogen-rich isoindoline-based porous polymer: promoting Knoevenagel reaction at room temperature. Green Energy Environ 2020;5(4):484‒91. 链接1

[29] Grimme S, Ehrlich S, Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 2011;32(7):1456‒65. 链接1

[30] Canneaux S, Bohr F, Henon E. KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results. J Comput Chem 2014;35(1):82‒93. 链接1

[31] Lin TJ, Heinz H. Accurate force field parameters and pH resolved surface models for hydroxyapatite to understand structure, mechanics, hydration, and biological interfaces. J Phys Chem C 2016;120(9):4975‒92. 链接1

[32] Lange J, de Souza junior FG, Nele M, Tavares FW, Segtovich ISV, da Silva GCQ, et al. Molecular dynamic simulation of oxaliplatin diffusion in poly(lactic acid-co-glycolic acid). Part A: parameterization and validation of the force-field CVFF. Macromol Theory Simul 2016;25(1):45‒62. 链接1

[33] Zhang J, Wang ZJ, Li L, Zhao JH, Zheng JF, Cui HJ, et al. Self-assembly of CNH nanocages with remarkable catalytic performance. J Mater Chem A 2014;2(22):8179‒83. 链接1

[34] Liu X, Qi SC, Peng AZ, Xue DM, Liu XQ, Sun LB. Foaming effect of a polymer precursor with a low N content on fabrication of N-doped porous carbons for CO2 capture. Ind Eng Chem Res 2019;58(25):11013‒21. 链接1

[35] Tian K, Wu Z, Xie F, Hu W, Li L. Nitrogen-doped porous carbons derived from triarylisocyanurate-cored polymers with high CO2 adsorption properties. Energy Fuels 2017;31(11):12477‒86. 链接1

[36] Ren XM, Li H, Chen J, Wei LJ, Modak A, Yang HQ, et al. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture. Carbon 2017;114:473‒81. 链接1

[37] Rao LL, Liu SF, Wang LL, Ma CD, Wu JY, An LY, et al. N-doped porous carbons from low-temperature and single-step sodium amide activation of carbonized water chestnut shell with excellent CO2 capture performance. Chem Eng J 2019;359:428‒35. 链接1

[38] Shao L, Liu M, Huang J, Liu YN. CO2 capture by nitrogen-doped porous carbons derived from nitrogen-containing hyper-cross-linked polymers. J Colloid Interface Sci 2018;513:304‒13. 链接1

[39] Chang BB, Zhang SR, Yin H, Yang BC. Convenient and large-scale synthesis of nitrogen-rich hierarchical porous carbon spheres for supercapacitors and CO2 capture. Appl Surf Sci 2017;412:606‒15. 链接1

[40] Yue L, Xia Q, Wang L, Wang L, DaCosta H, Yang J, et al. CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell. J Colloid Interface Sci 2018;511:259‒67. 链接1

[41] Puthiaraj P, Lee YR, Ahn WS. Microporous amine-functionalized aromatic polymers and their carbonized products for CO2 adsorption. Chem Eng J 2017;319:65‒74. 链接1

[42] Li X, Sui ZY, Sun YN, Xiao PW, Wang XY, Han BH. Polyaniline-derived hierarchically porous nitrogen-doped carbons as gas adsorbents for carbon dioxide uptake. Microporous Mesoporous Mater 2018;257:85‒91. 链接1

[43] Pan Y, Zhao Y, Mu S, Wang Y, Jiang C, Liu Q, et al. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials. J Mater Chem A 2017;5(20):9544‒52. 链接1

[44] Wei H, Qian W, Fu N, Chen H, Liu J, Jiang X, et al. Facile synthesis of nitrogen-doped porous carbons for CO2 capture and supercapacitors. J Mater Sci 2017;52(17):10308‒20. 链接1

[45] Fu N, Wei HM, Lin HL, Li L, Ji CH, Yu NB, et al. Iron nanoclusters as template/activator for the synthesis of nitrogen doped porous carbon and its CO2 adsorption application. ACS Appl Mater Interfaces 2017;9(11):9955‒63. 链接1

[46] Qi SC, Wu JK, Lu J, Yu GX, Zhu RR, Liu Y, et al. Underlying mechanism of CO2 adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO2 chiefly through acid-base interaction? J Mater Chem A 2019;7(30):17842‒53. 链接1

[47] Smith AL, D′Angelo ND, Bo YY, Booker SK, Cee VJ, Herberich B, et al. Structure-based design of a novel series of potent, selective inhibitors of the class I phosphatidylinositol 3-kinases. J Med Chem 2012;55(11):5188‒219. 链接1

相关研究