期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第23卷 第4期 doi: 10.1016/j.eng.2021.09.010

利用商用凝胶型离子交换树脂实现超微纳米颗粒的大规模生产与高效水处理

a School of the Environment, Nanjing University, Nanjing 210023, China
b School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, 210094, China
c Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
d College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China

收稿日期: 2021-05-16 修回日期: 2021-08-26 录用日期: 2021-09-01 发布日期: 2021-11-18

下一篇 上一篇

摘要

纳米技术为深度水处理提供了新的机遇。然而,高活性超微(<5 nm)纳米颗粒材料的大规模生产仍存在挑战,且超微材料在实际水处理中也存在操作困难等问题,阻碍了纳米技术在水污染控制领域的推广应用。针对这些问题,我们提出了一种简便的解决方法,即以商用凝胶型离子交换树脂N201 为载体合成超微纳米颗粒。N201 是一种季铵化的毫米级聚(苯乙烯二乙烯基苯共聚)小球。在N201 中通过简单的浸渍-沉淀获得了水合氧化铁(HFO)、水合氧化锰(HMO)、硫化镉(CdS)和零价铁(ZVI)等纳米颗粒,所有纳米颗粒的尺寸都小于5 nm。中试生产表明该合成方法方便放大,并制备了大量亚5 nm HFO颗粒。关于超微纳米颗粒的合成机理,我们认为每个在水中溶胀的N201 小球内都包含连续均匀水相,使反应物可快速地扩散到树脂球内部(7 s 内从小球表面扩散到中心),从而实现纳米颗粒的爆发成核,形成超窄尺寸分布的晶核。此外,交联聚合物链间还可形成狭窄的孔隙(直径<5 nm),可防止在其中形成的纳米颗粒过度生长。由于N201 载体具有毫米级尺寸,所制备的复合纳米材料可方便用于连续流装置中。批次实验和柱吸附测试表明,超微HFO颗粒对As(III/V)的吸附性能比约17 nm的HFO显著增强。本研究有望进一步促进纳米技术在实际水处理中的推广应用。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Powley HR, Dürr HH, Lima AT, Krom MD, Van Cappellen P. Direct discharges of domestic wastewater are a major source of phosphorus and nitrogen to the mediterranean sea. Environ Sci Technol 2016;50(16):8722‒30. 链接1

[ 2 ] Gao L, Gao B, Xu D, Peng W, Lu J. Multiple assessments of trace metals in sediments and their response to the water level fluctuation in the Three Gorges Reservoir, China. Sci Total Environ 2019;648:197‒205. 链接1

[ 3 ] Tang W, Kovalsky P, He D, Waite TD. Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res 2015;84:342‒9. 链接1

[ 4 ] Zhang Q, Bolisetty S, Cao Y, Handschin S, Adamcik J, Peng Q, et al. Selective and efficient removal of fluoride from water: in situ engineered amyloid Fibril/ZrO2 hybrid membranes. Angew Chem Int Ed Engl 2019;58(18):6012‒6. 链接1

[ 5 ] Song P, Yang Z, Zeng G, Yang X, Xu H, Wang L, et al. Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review. Chem Eng J 2017;317:707‒25. 链接1

[ 6 ] Ling C, Ren Z, Wei M, Tong F, Cheng Y, Zhang X, et al. Highly selective removal of Ni(II) from plating rinsing wastewaters containing [Ni-xNH3-yP2O7]n complexes using N-chelating resins. J Hazard Mater 2020;398:122960. 链接1

[ 7 ] Nyström F, Nordqvist K, Herrmann I, Hedström A, Viklander M. Removal of metals and hydrocarbons from stormwater using coagulation and flocculation. Water Res 2020;182:115919. 链接1

[ 8 ] Wang Y, Pan T, Yu Y, Wu Y, Pan Y, Yang X. A novel peroxymonosulfate (PMS)-enhanced iron coagulation process for simultaneous removal of trace organic pollutants in water. Water Res 2020;185:116136. 链接1

[ 9 ] Wang T, Zhang L, Li C, Yang W, Song T, Tang C, et al. Synthesis of core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 2015;49(9):5654‒62. 链接1

[10] Ji C, Wu D, Lu J, Shan C, Ren Y, Li T, et al. Temperature regulated adsorption and desorption of heavy metals to A-MIL-121: mechanisms and the role of exchangeable protons. Water Res 2021;189:116599. 链接1

[11] Zhao DL, Japip S, Zhang Y, Weber M, Maletzko C, Chung TS. Emerging thin-film nanocomposite (TFN) membranes for reverse osmosis: a review. Water Res 2020;173:115557. 链接1

[12] Nie G, Qiu S, Wang X, Du Y, Zhang Q, Zhang Y, et al. A millimeter-sized negatively charged polymer embedded with molybdenum disulfide nanosheets for efficient removal of Pb(II) from aqueous solution. Chin Chem Lett 2021;32(7):2342‒6. 链接1

[13] Zhang J, Gu D, Yang Y, Zhang H, Chen H, Dai D, et al. Influence of particle size on laser absorption and scanning track formation mechanisms of pure tungsten powder during selective laser melting. Engineering 2019;5(4):736‒45. 链接1

[14] Fang R, Lu C, Zhong Y, Xiao Z, Liang C, Huang H, et al. Puffed rice carbon with coupled sulfur and metal iron for high-efficiency mercury removal in aqueous solution. Environ Sci Technol 2020;54(4):2539‒47. 链接1

[15] Wang T, Jiang Z, An T, Li G, Zhao H, Wong PK. Enhanced visible-light-driven photocatalytic bacterial inactivation by ultrathin carbon-coated magnetic cobalt ferrite nanoparticles. Environ Sci Technol 2018;52(8):4774‒84. 链接1

[16] Guo J, Wan Y, Zhu Y, Zhao M, Tang Z. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res 2021;14(7):2037‒52.

[17] Qu Z, Wu Y, Zhu S, Yu Y, Huo M, Zhang L, et al. Green synthesis of magnetic adsorbent using groundwater treatment sludge for tetracycline adsorption. Engineering 2019;5(5):880‒7. 链接1

[18] Zhang G, Liu F, Liu H, Qu J, Liu R. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Environ Sci Technol 2014;48(17):10316‒22. 链接1

[19] Mendez JC, Hiemstra T. High and low affinity sites of ferrihydrite for metal ion adsorption: data and modeling of the alkaline-earth ions Be, Mg, Ca, Sr, Ba, and Ra. Geochim Cosmochim Acta 2020;286:289‒305. 链接1

[20] Razanajatovo MR, Gao W, Song Y, Zhao X, Sun Q, Zhang Q. Selective adsorption of phosphate in water using lanthanum-based nanomaterials: a critical review. Chin Chem Lett. 2021;32(9):2637‒47. 链接1

[21] Chekli L, Phuntsho S, Roy M, Lombi E, Donner E, Shon HK. Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Res 2013;47(13):4585‒99. 链接1

[22] Lofrano G, Carotenuto M, Libralato G, Domingos RF, Markus A, Dini L, et al. Polymer functionalized nanocomposites for metals removal from water and wastewater: an overview. Water Res 2016;92:22‒37. 链接1

[23] Qu X, Alvarez PJJ, Li Q. Applications of nanotechnology in water and wastewater treatment. Water Res 2013;47(12):3931‒46. 链接1

[24] Ali Zadeh Sahraei O, Larachi F, Abatzoglou N, Iliuta MC. Hydrogen production by glycerol steam reforming catalyzed by Ni-promoted Fe/Mg-bearing metallurgical wastes. Appl Catal B 2017;219:183‒93. 链接1

[25] Yang F, Zhang S, Sun Y, Cheng K, Li J, Tsang DCW. Fabrication and characterization of hydrophilic corn stalk biochar-supported nanoscale zero-valent iron composites for efficient metal removal. Bioresour Technol 2018;265:490‒7. 链接1

[26] Jin H, Zhou H, Ji P, Zhang C, Luo J, Zeng W, et al. ZIF-8/LiFePO4 derived Fe‒N‒P Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res 2020;13(3):818‒23. 链接1

[27] Zhang Z, Tan Y, Zeng T, Yu L, Chen R, Cheng N, et al. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res 2021;7:2353‒62. 链接1

[28] Jiang Y, Hua M, Wu B, Ma H, Pan B, Zhang Q. Enhanced removal of arsenic from a highly laden industrial effluent using a combined coprecipitation/nano-adsorption process. Environ Sci Pollut Res Int 2014;21(10):6729‒35. 链接1

[29] Hua M, Xiao LL, Pan BC, Zhang QX. Validation of polymer-based nano-iron oxide in further phosphorus removal from bioeffluent: laboratory and scaledup study. Front Environ Sci Eng 2013;7(3):435‒41. 链接1

[30] Luo Z, Castleman AWJr, Khanna SN. Reactivity of metal clusters. Chem Rev 2016;116(23):14456‒92. 链接1

[31] Liu JX, Wang P, Xu W, Hensen EJM. Particle size and crystal phase effects in Fischer-Tropsch catalysts. Engineering 2017;3(4):467‒76. 链接1

[32] Yavuz CT, Mayo JT, Yu WW, Prakash A, Falkner JC, Yean S, et al. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 2006;314(5801):964‒7. 链接1

[33] Zhang X, Cheng C, Qian J, Lu Z, Pan S, Pan B. Highly efficient water decontamination by using sub-10 nm FeOOH confined within millimeter-sized mesoporous polystyrene beads. Environ Sci Technol 2017;51(16):9210‒8. 链接1

[34] Qi Y, He CT, Lin J, Lin S, Liu J, Huang J, et al. Mild metal-organic-gel route for synthesis of stable sub-5-nm metal-organic framework nanocrystals. Nano Res 2017;10(11):3621‒8. 链接1

[35] Zhang D, Wang Y, Deng J, Wang X, Guo G. Microfluidics revealing formation mechanism of intermetallic nanocrystals. Nano Energy 2020;70:104565. 链接1

[36] Zhang N, Yu SH, Abruña HD. Regulating lithium nucleation and growth by zinc modified current collectors. Nano Res 2020;13(1):45‒51. 链接1

[37] Su X, Chang J, Wu S, Tang B, Zhang S. Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color. Nanoscale 2016;8(11):6155‒61. 链接1

[38] Baronov A, Bufkin K, Shaw DW, Johnson BL, Patrick DL. A simple model of burst nucleation. Phys Chem Chem Phys 2015;17(32):20846‒52. 链接1

[39] Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed Engl 2009;48(1):60‒103. 链接1

[40] Jiang X, Shao Y, Sheng L, Li P, He G. Membrane crystallization for process intensification and control: a review. Engineering 2021;7(1):50‒62. 链接1

[41] Jin R, Zeng C, Zhou M, Chen Y. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 2016;116(18):10346‒413. 链接1

[42] Fernández-Lodeiro C, Fernandez-Lodeiro J, Carbo-Argibay E, Lodeiro C, Perez-Juste J, Pastoriza-Santos I. The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature. Nano Res 2020;13(9):2351‒5. 链接1

[43] Wu Z, Yang S, Wu W. Shape control of inorganic nanoparticles from solution. Nanoscale 2016;8(3):1237‒59. 链接1

[44] Saldanha PL, Lesnyak V, Manna L. Large scale syntheses of colloidal nanomaterials. Nano Today 2017;12:46‒63. 链接1

[45] Zhang Y, Kubů M, Mazur M, Čejka J. Synthesis of Pt-MWW with controllable nanoparticle size. Catal Today 2019;324:135‒43. 链接1

[46] Gerber IC, Serp P. A theory/experience description of support effects in carbon-supported catalysts. Chem Rev 2020;120(2):1250‒349. 链接1

[47] Zhang QX, Zhang ZP, Li AM, Pan BC, Zhang XL. Advance in ion exchange and adsorption resins in China. Acta Polym Sin 2018;(7):814‒28. Chinese.

[48] Topp NE, Pepper KW. Properties of ion-exchange resins in relation to their structure. Part I. Titration curves. J Chem Soc 1949;3299‒303. 链接1

[49] Corain B, Jerabek K, Centomo P, Canton P. Generation of size-controlled Pd0 nanoclusters inside nanoporous domains of gel-type resins: diverse and convergent evidence that supports a strategy of template-controlled synthesis. Angew Chem Int Ed Engl 2004;43(8):959‒62. 链接1

[50] Zhang X, Wu M, Dong H, Li H, Pan B. Simultaneous oxidation and sequestration of As(III) from water by using redox polymer-based Fe(III) oxide nanocomposite. Environ Sci Technol 2017;51(11):6326‒34. 链接1

[51] Zhang Y, She X, Gao X, Shan C, Pan B. Unexpected favorable role of Ca2+ in phosphate removal by using nanosized ferric oxides confined in porous polystyrene beads. Environ Sci Technol 2019;53(1):365‒72. 链接1

[52] Pan B, Xu J, Wu B, Li Z, Liu X. Enhanced removal of fluoride by polystyrene anion exchanger supported hydrous zirconium oxide nanoparticles. Environ Sci Technol 2013;47(16):9347‒54. 链接1

[53] Zhu L, Liu Y, Chen J. Synthesis of n-methylimidazolium functionalized strongly basic anion exchange resins for adsorption of Cr(VI). Ind Eng Chem Res 2009;48(7):3261‒7. 链接1

[54] Sherrington DC. Preparation, structure and morphology of polymer supports. Chem Commun 1998;21:2275‒86. 链接1

[55] Du Y, Fang P, Chen J, Hou X. Synthesis of reusable macroporous St/BMA copolymer resin and its absorbency to organic solvent and oil. Polym Adv Technol 2016;27(3):393‒403. 链接1

[56] Sun S, Gebauer D, Cölfen H. Alignment of amorphous iron oxide clusters: a non-classical mechanism for magnetite formation. Angew Chem Int Ed Engl 2017;56(14):4042‒6. 链接1

[57] Yao ZF, Wang ZY, Wu HT, Lu Y, Li QY, Zou L, et al. Ordered solid-state microstructures of conjugated polymers arising from solution-state aggregation. Angew Chem Int Ed Engl 2020;59(40):17467‒71. 链接1

[58] Zheng SJ, Li ZQ, Liu ZS. The fast homogeneous diffusion of hydrogel under different stimuli. Int J Mech Sci 2018;137:263‒70. 链接1

[59] Pan S, Zhang X, Qian J, Lu Z, Hua M, Cheng C, et al. A new strategy to address the challenges of nanoparticles in practical water treatment: mesoporous nanocomposite beads via flash freezing. Nanoscale 2017;9(48):19154‒61. 链接1

[60] Chernyshova IV, Ponnurangam S, Somasundaran P. Effect of nanosize on catalytic properties of ferric (hydr)oxides in water: Mechanistic insights. J Catal 2011;282(1):25‒34. 链接1

[61] Shi QT, Sterbinsky GE, Zhang SJ, Christodoulatos C, Korfiatis GP, Meng XG. Formation of Fe(III)‒As(V) complexes: effect on the solubility of ferric hydroxide precipitates and molecular structural identification. Environ Sci Nano 2020;7(5):1388‒98. 链接1

[62] Wei Y, Wei S, Liu C, Chen T, Tang Y, Ma J, et al. Efficient removal of arsenic from groundwater using iron oxide nanoneedle array-decorated biochar fibers with high Fe utilization and fast adsorption kinetics. Water Res 2019;167:115107. 链接1

[63] Li H, Shan C, Zhang Y, Cai J, Zhang W, Pan B. Arsenate adsorption by hydrous ferric oxide nanoparticles embedded in cross-linked anion exchanger: effect of the host pore structure. ACS Appl Mater Interfaces 2016;8(5):3012‒20. 链接1

[64] Fang Z, Li Z, Zhang X, Pan S, Wu M, Pan B. Enhanced arsenite removal from silicate-containing water by using redox polymer-based Fe(III) oxides nanocomposite. Water Res 2021;189:116673. 链接1

[65] Uddin MJ, Jeong YK. Review: Efficiently performing periodic elements with modern adsorption technologies for arsenic removal. Environ Sci Pollut Res Int 2020;27(32):39888‒912. 链接1

[66] Zhang X, Zhang L, Li Z, Jiang Z, Zheng Q, Lin B, et al. Rational design of antifouling polymeric nanocomposite for sustainable fluoride removal from NOM-rich Water. Environ Sci Technol 2017;51(22):13363‒71. 链接1

相关研究