期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第11卷 第4期 doi: 10.1016/j.eng.2021.10.019

用于人体器官的无线生物电子器件的最新研究进展——对利用天线系统进行生物遥测和无线能量传输的前景展望

School of Electronic Engineering and Computer Science, Queen Mary University of London, London E1 4NS, United Kingdom

收稿日期: 2021-03-04 修回日期: 2021-08-23 录用日期: 2021-10-11 发布日期: 2022-01-12

下一篇 上一篇

摘要

电子学和生物学的结合催生了生物电子学,为研究人员实现对尚未被满足的治疗方案的需求带来了激动人心的机遇。纳米电子学及柔性、生物相容性材料的发展显示出潜在的临床应用(如生理传感、药物输送、心血管监测和脑刺激)价值。迄今为止,大多数生物电子器件都需要通过有线连接来进行电子控制,因此对患者来说,这些器件的植入既复杂又缺乏便利性。而作为替代方案,无线技术正在蓬勃发展,形成了能够提供无创控制、生物遥测和无线电能传输(WPT)的生物电子学。本文综述了无线生物电子学及其在器官特异性治疗(包括疾病和功能障碍)应用中的持续发展。本文重点描述了天线的关键特性,即辐射特性、材料选择、与其他电子器件的集成和测量。尽管无线生物电子学的最新进展有望增加对器件功能的控制,但在技术商业化以及应对不断扩大的未来医疗需求方面仍面临诸多挑战。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

参考文献

[ 1 ] Mahmood M, Kwon S, Berkmen GK, Kim YS, Scorr L, Jinnah HA, et al. Soft nanomembrane sensors and flexible hybrid bioelectronics for wireless quantification of blepharospasm. IEEE Trans Biomed Eng 2020;67(11): 3094–100. 链接1

[ 2 ] Kwon YT, Kim YS, Kwon S, Mahmood M, Lim HR, Park SW, et al. All-printed nanomembrane wireless bioelectronics using a biocompatible solderable graphene formultimodal human–machine interfaces. Nat Commun 2020;11(1): 3450. 链接1

[ 3 ] Lee H, Lee Y, Song C, Cho HR, Ghaffari R, Choi TK, et al. An endoscope with integrated transparent bioelectronics and theranostic nanoparticles for colon cancer treatment. Nat Commun 2015;6(1):10059. 链接1

[ 4 ] Liu Y, Yang T, Zhang Y, Qu G, Wei S, Liu Z, et al. Ultrastretchable and wireless bioelectronics based on all-hydrogel microfluidics. Adv Mater 2019;31(39): e1902783. 链接1

[ 5 ] Shi C, Costa T, Elloian J, Zhang Y, Shepard KL. A 0.065-mm3 monolithicallyintegrated ultrasonic wireless sensing mote for real-time physiological temperature monitoring. IEEE Trans Biomed Circ Sci 2020;14(3):412–24. 链接1

[ 6 ] Lim HR, Kim HS, Qazi R, Kwon YT, Jeong JW, Yeo WH. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment. Adv Mater 2020;32(15):e1901924. 链接1

[ 7 ] Choi S, Lee H, Ghaffari R, Hyeon T, Kim DH. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv Mater 2016;28(22):4203–18. 链接1

[ 8 ] Yao G, Yin C, Wang Q, Zhang T, Chen S, Lu C, et al. Flexible bioelectronics for physiological signals sensing and disease treatment. J Materiomics 2020;6(2): 397–413. 链接1

[ 9 ] Rangriz F, Khaleghi A, Balasingham I. Wireless link for micro-scale biomedical implants using magnetoelectric antenna. In: Proceedings of 2020 14th European Conference on Antennas and Propagation (EuCAP); 2020 Mar 15– 20; Copenhagen, Denmark. New York: IEEE; 2020. p. 1–4. 链接1

[10] Taalla RV, Arefin MS, Kaynak A, Kouzani AZ. A review on miniaturized ultrasonic wireless power transfer to implantable medical devices. IEEE Access 2019;7:2092–106. 链接1

[11] Khan AN, Ermakov A, Sukhorukov G, Hao Y. Radio frequency controlled wireless drug delivery devices. Appl Phys Rev 2019;6(4):041301. 链接1

[12] Koo J, Kim SB, Choi YS, Xie Z, Bandodkar AJ, Khalifeh J, et al. Wirelessly controlled, bioresorbable drug delivery device with active valves that exploit electrochemically triggered crevice corrosion. Sci Adv 2020;6(35): eabb1093. 链接1

[13] Lee CY, Hsieh PH, Yang CH. A standard-cell-design-flow compatible energyrecycling logic with 70% energy saving. IEEE Trans Circuits I: Regular Papers 2016;63(1):70–9. 链接1

[14] Chandrakasan AP, Verma N, Daly DC. Ultralow-power electronics for biomedical applications. Annu Rev Biomed Eng 2008;10(1):247–74. 链接1

[15] Hall PS, Hao Y. Antennas and propagation for body centric communications. In: Proceedings of 2006 First European Conference on Antennas and Propagation; 2006 Nov 6–10; Nice, France. New York: IEEE; 2006. p. 1–7. 链接1

[16] Hao Y, Alomainy A, Zhao Y. Antenna design and propagation measurements and modelling for UWB wireless BAN. In: Allen B, Dohler M, Okon EE, Dphil WQM, Brown AK, Edwards DJ, editors. Ultra-wideband antennas and propagation: for communications, radar and imaging. Wiley Online Library; 2006. p. 331–59. 链接1

[17] Hall PS, Hao Y. Antennas and propagation for body-centric wireless communications. 2nd ed. Boston: Artech house; 2012. 链接1

[18] Steiger C, Abramson A, Nadeau P, Chandrakasan AP, Langer R, Traverso G. Ingestible electronics for diagnostics and therapy. Nat Rev Mater 2019;4(2): 83–98. 链接1

[19] Alomainy A, Hao Y, Pasveer F. Modelling and characterisation of a compact sensor antenna for healthcare applications. In: Leonhardt S, Falck T, Mähönen P, editors. Proceedings of 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007); 2007 Mar 26–28; Aachen, Germany. Berlin: Springer; 2007. p. 3–8. 链接1

[20] Kaim V, Kanaujia BK, Kumar S, Choi HC, Kim KW, Rambabu K. Ultra-miniature circularly polarized CPW-Fed implantable antenna design and its validation for biotelemetry applications. Sci Rep 2020;10(1):6795. 链接1

[21] Nikolayev D, Zhadobov M, Joseph W, Martens L, Sauleau R. Radiation performance of highly miniaturized implantable devices. In: Proceedings of 2019 49th European Microwave Conference (EuMC); 2019 Sep 29–Oct 4; Paris, France. New York: IEEE; 2019. p. 216–9. 链接1

[22] Wen D, Hao Y, Wang H, Zhou H. Design of a compact and low-profile wearable MIMO antenna for wireless personal area networks. In: Proceedings of 12th European Conferece on Antennas and Propagation (EuCAP 2018); 2018 Apr 9–13; London, UK. Brusselsp: EurAAP; 2018. p. 1–5. 链接1

[23] Miah MS, Khan AN, Icheln C, Haneda K, Takizawa KI. Antenna system design for improved wireless capsule endoscope links at 433 MHz. IEEE Trans Antenn Propag 2019;67(4):2687–99. 链接1

[24] Wen D, Hao Y, Munoz MO, Wang H, Zhou H. A compact and lowprofile MIMO antenna using a miniature circular high-impedance surface for wearable applications. IEEE Trans Antenn Propag 2018;66(1):96–104. 链接1

[25] Bhattacharjee S, Maity S, Metya SK, Bhunia CT. Performance enhancement of implantable medical antenna using differential feed technique. Eng Sci Technol 2016;19(1):642–50. 链接1

[26] Machnoor M, Paknahad J, Stang J, Lazzi G. Wireless telemetry system with independent power and data frequency resonance. IEEE Antennas Wirel Propag Lett 2020;19(4):690–4. 链接1

[27] Islam MN, Yuce MR. Review of medical implant communication system (MICS) band and network. ICT Express 2016;2(4):188–94. 链接1

[28] Lin R, Kim HJ, Achavananthadith S, Kurt SA, Tan SCC, Yao H, et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat Commun 2020;11(1):444. 链接1

[29] Mickle AD, Won SM, Noh KN, Yoon J, Meacham KW, Xue Y, et al. A wireless closed-loop system for optogenetic peripheral neuromodulation. Nature 2019;565(7739):361–5. 链接1

[30] Gutruf P, Krishnamurthi V, Vázquez-Guardado A, Xie Z, Banks A, Su CJ, et al. Fully implantable optoelectronic systems for battery-free, multimodal operation in neuroscience research. Nat Electron 2018;1(12):652–60. 链接1

[31] Fan X, Shangguan L, Howard R, Zhang Y, Peng Y, Xiong J, et al. Towards flexible wireless charging for medical implants using distributed antenna system. In: Proceedings of the 26th Annual International Conference on Mobile Computing and Networking; 2020 Sep 21–25; London, UK. New York: Association for Computing Machinery; 2020. p. 1–15. 链接1

[32] Zhang Y, Huo Z, Wang X, Han X, Wu W, Wan B, et al. High precision epidermal radio frequency antenna via nanofiber network for wireless stretchable multifunction electronics. Nat Commun 2020;11(1):5629. 链接1

[33] Xu S, Hansen BJ, Wang ZL. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nat Commun 2010;1(1):93. 链接1

[34] Dagdeviren C, Yang BD, Su Y, Tran PL, Joe P, Anderson E, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA 2014;111(5):1927–32. 链接1

[35] Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008;451(7175):163–7. 链接1

[36] Mercier PP, Lysaght AC, Bandyopadhyay S, Chandrakasan AP, Stankovic KM. Energy extraction from the biologic battery in the inner ear. Nat Biotechnol 2012;30(12):1240–3. 链接1

[37] Ma A, Poon ASY. Midfield wireless power transfer for bioelectronics. IEEE Circuits Syst Mag 2015;15(2):54–60. 链接1

[38] Dautov K, Hashmi M, Nauryzbayev G, Nasimuddin N. Recent advancements in defected ground structure-based near-field wireless power transfer systems. IEEE Access 2020;8:81298–309. 链接1

[39] Miller L, Farajidavar A, Vegesna A. Use of bioelectronics in the gastrointestinal tract. Cold Spring Harb Perspect Med 2019;9(9):a034165. 链接1

[40] Kong YL, Zou X, McCandler CA, Kirtane AR, Ning S, Zhou J, et al. 3D-printed gastric resident electronics. Adv Mater Technol 2019;4(3):1800490. 链接1

[41] Mimee M, Nadeau P, Hayward A, Carim S, Flanagan S, Jerger L, et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 2018;360(6391):915–8. 链接1

[42] Liu X, Steiger C, Lin S, Parada GA, Liu J, Chan HF, et al. Ingestible hydrogel device. Nat Commun 2019;10(1):1–10. 链接1

[43] Dey N, Ashour AS, Shi F, Sherratt RS. Wireless capsule gastrointestinal endoscopy: direction-of-arrival estimation based localization survey. IEEE Rev Biomed Eng 2017;10:2–11. 链接1

[44] Faerber J, Gregson R, Clutton RE, Khan SR, Cochran S, Desmulliez MPY, et al. In vivo characterization of a wireless telemetry module for a capsule endoscopy system utilizing a conformal antenna. IEEE Trans Biomed Circ Sci 2018;12(1): 95–105. 链接1

[45] Wang J, Leach M, Lim EG, Wang Z, Pei R, Huang Y. An implantable and conformal antenna for wireless capsule endoscopy. IEEE Antennas Wirel Propag Lett 2018;17(7):1153–7. 链接1

[46] Zhu C, Hong L, Yang H, Sengupta K. Ingestible bioelectronics: a packaged, biomolecular, fluorescence-based sensor array with ultralow-power wireless interface. In: Proceedings of 2019 IEEE MTT-S International Microwave Symposium (IMS); 2019 Jun 2–7; Boston, MA, USA. New York: IEEE; 2019. p. 212–5. 链接1

[47] Muhammad K, Khan S, Kumar N, Del Ser J, Mirjalili S. Vision-based personalized wireless capsule endoscopy for smart healthcare: taxonomy, literature review, opportunities and challenges. Future Gener Comput Syst 2020;113:266–80. 链接1

[48] Alsunaydih FN, Arefin MS, Redoute JM, Yuce MR. A navigation and pressure monitoring system toward autonomous wireless capsule endoscopy. IEEE Sens J 2020;20(14):8098–107. 链接1

[49] Kalantar-zadeh K, Ha N, Ou JZ, Berean KJ. Ingestible sensors. ACS Sens 2017;2(4): 468–83. 链接1

[50] Bettinger CJ. Advances in materials and structures for ingestible electromechanical medical devices. Angew Chem Int Ed Engl 2018;57(52): 16946–58. 链接1

[51] Cao H, Rao S, Tang SJ, Tibbals HF, Spechler S, Chiao JC. Batteryless implantable dual-sensor capsule for esophageal reflux monitoring. Gastrointest Endosc 2013;77(4):649–53. 链接1

[52] Shao G, Guo YX. Hybrid wireless positioning and charging with switched field helmholtz coils for wireless capsule endoscopy. IEEE Trans Microw Theory Technol 2020;68(3):904–13. 链接1

[53] Leung BHK, Poon CCY, Zhang R, Zheng Y, Chan CKW, Chiu PWY, et al. A therapeutic wireless capsule for treatment of gastrointestinal haemorrhage by balloon tamponade effect. IEEE Trans Biomed Eng 2017;64(5):1106–14. 链接1

[54] Sarestoniemi M, Pomalaza-Raez C, Kissi C, Berg M, Hamalainen M, Iinatti J. WBAN channel characteristics between capsule endoscope and receiving directive UWB on-body antennas. IEEE Access 2020;8:55953–68. 链接1

[55] Lo YK, Wang PM, Dubrovsky G, Wu MD, Chan M, Dunn J, et al. A wireless implant for gastrointestinal motility disorders. Micromachines 2018;9(1):17. 链接1

[56] Biswas B, Karmakar A, Chandra V. Miniaturised wideband ingestible antenna for wireless capsule endoscopy. IET Microw Antennas Propag 2020;14(4): 293–301. 链接1

[57] Neebha TM, Andrushia AD, Durga S. A state-of-art review on antenna designs for ingestible application. Electromagn Biol Med 2020;39(4):387–402. 链接1

[58] Beardslee LA, Banis GE, Chu S, Liu S, Chapin AA, Stine JM, et al. Ingestible sensors and sensing systems for minimally invasive diagnosis and monitoring: the next frontier in minimally invasive screening. ACS Sens 2020;5(4):891–910. 链接1

[59] Lai J, Wang J, Zhao K, Jiang H, Chen L, Wu Z, et al. Design of a dual-polarized omnidirectional dielectric resonator antenna for capsule endoscopy system. IEEE Access 2021;9:14779–86. 链接1

[60] Basir A, Zada M, Cho Y, Yoo H. A dual-circular-polarized endoscopic antenna with wideband characteristics and wireless biotelemetric link characterization. IEEE Trans Antenn Propag 2020;68(10):6953–63. 链接1

[61] Duan Z, Xu H, Gao SS, Geyi W. A circularly polarized omnidirectional antenna for wireless capsule endoscope system. IEEE Trans Antenn Propag 2021;69(4): 1896–907. 链接1

[62] Bao Z, Guo YX. Novel miniaturized antenna with a highly tunable complex input impedance for capsules. IEEE Trans Antenn Propag 2021;69(6): 3106–14. 链接1

[63] Christoe MJ, Phaoseree N, Han J, Michael A, Atakaramians S, Kalantar-Zadeh K. Meandering pattern 433 MHz antennas for ingestible capsules. IEEE Access 2021;9:91874–82. 链接1

[64] Kim K, Yun S, Lee S, Nam S, Yoon YJ, Cheon C. A design of a high-speed and highefficiency capsule endoscopy system. IEEE Trans Biomed Eng 2012;59(4): 1005–11. 链接1

[65] Barbi M, Garcia-Pardo C, Nevarez A, Pons Beltran V, Cardona N. UWB RSSbased localization for capsule endoscopy using a multilayer phantom and in vivo measurements. IEEE Trans Antenn Propag 2019;67(8):5035–43. 链接1

[66] Bettinger CJ. Materials advances for next-generation ingestible electronic medical devices. Trends Biotechnol 2015;33(10):575–85. 链接1

[67] Hwang GT, Im D, Lee SE, Lee J, Koo M, Park SY, et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 2013;7(5):4545–53. 链接1

[68] Arefin MS, Redoute JM, Yuce MR. Integration of low-power ASIC and MEMS sensors for monitoring gastrointestinal tract using a wireless capsule system. IEEE J Biomed Health Inform 2018;22(1):87–97. 链接1

[69] Nadeau P, El-Damak D, Glettig D, Kong YL, Mo S, Cleveland C, et al. Prolonged energy harvesting for ingestible devices. Nat Biomed Eng 2017;1(3): 1–8. 链接1

[70] Xu F, Zhang H, Jin L, Li Y, Li J, Gan G, et al. Controllably degradable transient electronic antennas based on watersoluble PVA/TiO2 films. J Mater Sci 2018;53(4):2638–47. 链接1

[71] Inui T, Koga H, Nogi M, Komoda N, Suganuma K. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv Mater 2015;27(6):1112–6. 链接1

[72] Song M, Ding M, Tiurin E, Xu K, Allebes E, Singh G, et al. A millimeter-scale crystal-less mics transceiver for insertable smart pills. IEEE Trans Biomed Circ Sci 2020;14(6):1218–29. 链接1

[73] Lei W, Guo YX. Design of a dual-polarized wideband conformal loop antenna for capsule endoscopy systems. IEEE Trans Antenn Propag 2018;66(11): 5706–15. 链接1

[74] Basar MR, Ahmad MY, Cho J, Ibrahim F. An improved resonant wireless power transfer system with optimum coil configuration for capsule endoscopy. Sens Actuator A Phys 2016;249:207–16. 链接1

[75] Abid A, O’Brien JM, Bensel T, Cleveland C, Booth L, Smith BR, et al. Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model. Sci Rep 2017;7(1):46745. 链接1

[76] Mills JO, Jalil A, Stanga PE. Electronic retinal implants and artificial vision: journey and present. Eye 2017;31(10):1383–98. 链接1

[77] Bahrami S, Moloudian G, Miri-Rostami SR, Bjorninen T. Compact microstrip antennas with enhanced bandwidth for the implanted and external subsystems of a wireless retinal prosthesis. IEEE Trans Antenn Propag 2021;69(5):2969–74. 链接1

[78] Jeong J, Bae SH, Min KS, Seo JM, Chung H, KIM SJ. A miniaturized, eyeconformable, and long-term reliable retinal prosthesis using monolithic fabrication of liquid crystal polymer (LCP). IEEE Trans Biomed Eng 2015;62(3): 982–9. 链接1

[79] Ahnood A, Cheriton R, Bruneau A, Belcourt JA, Ndabakuranye JP, Lemaire W, et al. Laser driven miniature diamond implant for wireless retinal prostheses. Adv Biosyst 2020;4(11):e2000055. 链接1

[80] Weiland JD, Liu W, Humayun MS. Retinal prosthesis. Annu Rev Biomed Eng 2005;7(1):361–401. 链接1

[81] Ng DC, Bai S, Yang J, Tran N, Skafidas E. Wireless technologies for closed-loop retinal prostheses. J Neural Eng 2009;6(6):065004. 链接1

[82] Liu H, Zhao T, Jiang W, Jia R, Niu D, Qiu G, et al. Flexible battery-less bioelectronic implants: wireless powering and manipulation by near-infrared light. Adv Funct Mater 2015;25(45):7071–9. 链接1

[83] Fallegger F, Schiavone G, Lacour SP. Conformable hybrid systems for implantable bioelectronic interfaces. Adv Mater 2020;32(15):e1903904. 链接1

[84] Theogarajan LS. A low-power fully implantable 15-channel retinal stimulator chip. IEEE J Solid-Stat Circ 2008;43(10):2322–37. 链接1

[85] Shire DB, Kelly SK, Chen J, Doyle P, Gingerich MD, Cogan SF, et al. Development and implantation of a minimally invasive wireless subretinal neurostimulator. IEEE Trans Biomed Eng 2009;56(10):2502–11. 链接1

[86] Yang Z, Liu W, Basham E. Inductor modeling in wireless links for implantable electronics. IEEE Trans Magn 2007;43(10):3851–60. 链接1

[87] Wu L, Yang Z, Basham E, Liu W. An efficient wireless power link for high voltage retinal implant. In: Proceedings of 2008 IEEE Biomedical Circuits and Systems Conference; 2008 Nov 20–22; Baltimore, MD, USA. New York: IEEE; 2008. p. 101–4. 链接1

[88] Walter P, Kisva´ rday ZF, Görtz M, Alteheld N, Rossler G, Stieglitz T, et al. Cortical activation via an implanted wireless retinal prosthesis. Invest Ophthalmol Vis Sci 2005;46(5):1780–5. 链接1

[89] Bloch E, Luo Y, da Cruz L. Advances in retinal prosthesis systems. Ther Adv Ophthalmol 2019;11:251584141881750. 链接1

[90] Kaim V, Kanaujia BK, Rambabu K. Design of a miniaturised broadband 3 3 mm antenna for intraocular retinal prosthesis application. Electron Lett 2018;54(20):1150–2. 链接1

[91] Gosalia K, Humayun MS, Lazzi G. Impedance matching and implementation of planar space-filling dipoles as intraocular implanted antennas in a retinal prosthesis. IEEE Trans Antenn Propag 2005;53(8):2365–73. 链接1

[92] Soora S, Gosalia K, Humayun MS, Lazzi G. A comparison of two and three dimensional dipole antennas for an implantable retinal prosthesis. IEEE Trans Antenn Propag 2008;56(3):622–9. 链接1

[93] Stronks HC, Dagnelie G. The functional performance of the Argus II retinal prosthesis. Expert Rev Med Devices 2014;11(1):23–30. 链接1

[94] da Cruz L, Coley BF, Dorn J, Merlini F, Filley E, Christopher P, et al. The Argus II epiretinal prosthesis system allows letter and word reading and long-term function in patients with profound vision loss. Br J Ophthalmol 2013;97(5): 632–6. 链接1

[95] Kelly SK, Shire DB, Chen J, Doyle P, Gingerich MD, Cogan SF, et al. A hermetic wireless subretinal neurostimulator for vision prostheses. IEEE Trans Biomed Eng 2011;58(11):3197–205. 链接1

[96] Paun MA, Paun VA. High-frequency 3-D model for the study of antennas in cochlear implants. IEEE Trans Compon Packaging Manuf Technol 2018;8(7): 1135–40. 链接1

[97] Mehrkian S, Bayat Z, Javanbakht M, Emamdjomeh H, Bakhshi E. Effect of wireless remote microphone application on speech discrimination in noise in children with cochlear implants. Int J Pediatr Otorhinolaryngol 2019;125:192–5. 链接1

[98] Loizou PC. Mimicking the human ear. IEEE Signal Process Mag 1998;15(5): 101–30. 链接1

[99] Agarwal K, Jegadeesan R, Guo YX, Thakor NV. Wireless power transfer strategies for implantable bioelectronics. IEEE Rev Biomed Eng 2017;10:136–61. 链接1

[100] Zeng FG, Rebscher S, Harrison W, Sun X, Feng H. Cochlear implants: system design, integration, and evaluation. IEEE Rev Biomed Eng 2008;1:115–42. 链接1

[101] Qian XH, Lee YC, Chang JH, Lin ST, Li SH, Wu TC, et al. Design and in vivo verification of a CMOS bone-guided cochlear implant microsystem. IEEE Trans Biomed Eng 2019;66(11):3156–67. 链接1

[102] Hong S, Jeong S, Lee S, Sim B, Kim H, Kim J. Low EMF design of cochlear implant wireless power transfer system using a shielding coil. In: Proceedings of 2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI); 2020 Jul 28–Aug 28; Reno, NV, USA. New York: IEEE; 2020. p. 623–5. 链接1

[103] Buchegger T, Oßberger G, Reisenzahn A, Hochmair E, Stelzer A, Springer A. Ultra-wideband transceivers for cochlear implants. EURASIP J Adv Signal Process 2005;18:3069–75. 链接1

[104] Vorobyov A, Hennemann C, Vasylchenko A, Decotignie JD, Baumgartner J. Folded loop antenna as a promising solution for a cochlear implant. In: Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014); 2014 Apr 6–11; The Hague, Netherlands. New York: IEEE; 2014. p. 1735–8.

[105] Mattoso R, Novotny AA. Pointwise antennas design in hyperthermia therapy. Appl Math Model 2021;89(1):89–104. 链接1

[106] Chen G, Stang J, Haynes M, Leuthardt E, Moghaddam M. Real-time threedimensional microwave monitoring of interstitial thermal therapy. IEEE Trans Biomed Eng 2018;65(3):528–38. 链接1

[107] Choi WC, Lim S, Yoon YJ. Design of noninvasive hyperthermia system using transmit-array lens antenna configuration. IEEE Antennas Wirel Propag Lett 2016;15:857–60. 链接1

[108] Bucci OM, Crocco L, Scapaticci R, Bellizzi G. On the design of phased arrays for medical applications. Proc IEEE 2016;104(3):633–48. 链接1

[109] Cho YK, Rhim H, Noh S. Radiofrequency ablation versus surgical resection as primary treatment of hepatocellular carcinoma meeting the Milan criteria: a systematic review. J Gastroenterol Hepatol 2011;26(9):1354–60. 链接1

[110] Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol 2002;3(8): 487–97. 链接1

[111] Nguyen PT, Abbosh AM, Crozier S. 3-D focused microwave hyperthermia for breast cancer treatment with experimental validation. IEEE Trans Antenn Propag 2017;65(7):3489–500. 链接1

[112] Yi Y, Chen J, Selvaraj M, Hsiang Y, Takahata K. Wireless hyperthermia stent system for restenosis treatment and testing with swine model. IEEE Trans Biomed Eng 2020;67(4):1097–104. 链接1

[113] Luo Y, Dahmardeh M, Chen X, Takahata K. A resonant-heating stent for wireless endohyperthermia treatment of restenosis. Sens Actuators A Phys 2015;236:323–33. 链接1

[114] Son D, Lee J, Lee DJ, Ghaffari R, Yun S, Kim SJ, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano 2015;9(6):5937–46. 链接1

[115] Luo Y, Chen X, Dahmardeh M, Takahata K. RF-powered stent with integrated circuit breaker for safeguarded wireless hyperthermia treatment. J Microelectromech Syst 2015;24(5):1293–302. 链接1

[116] Cai M, Takahata K, Mirabbasi S. A low-voltage low-power implantable telemonitoring system with application to endo-hyperthermia treatment of in-stent restenosis. In: Proceedings of 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS); 2020 Jun 16–19; Montreal, QC, Canada. New York: IEEE; 2020. p. 331–4. 链接1

[117] Lazarus A. Remote, wireless, ambulatory monitoring of implantable pacemakers, cardioverter defibrillators, and cardiac resynchronization therapy systems: analysis of a worldwide database. Pacing Clin Electrophysiol 2007;30(s1):S2–12. 链接1

[118] Kakria P, Tripathi NK, Kitipawang P. A real-time health monitoring system for remote cardiac patients using smartphone and wearable sensors. Int J Telemed Appl 2015;2015:373474. 链接1

[119] Hong YJ, Jeong H, Cho KW, Lu N, Kim DH. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv Funct Mater 2019;29(19):1808247. 链接1

[120] Alghrairi M, Sulaiman N, Mutashar S. Health care monitoring and treatment for coronary artery diseases: challenges and issues. Sensors 2020;20(15): 4303. 链接1

[121] Lee SP, Ha G, Wright DE, Ma Y, Sen-Gupta E, Haubrich NR, et al. Highly flexible, wearable, and disposable cardiac biosensors for remote and ambulatory monitoring. NPJ Digit Med 2018;1(1):2. 链接1

[122] Ren H, Jin H, Chen C, Ghayvat H, Chen W. A novel cardiac auscultation monitoring system based on wireless sensing for healthcare. IEEE J Transl Eng Health Med 2018;6:1–12. 链接1

[123] Wang C, Qin Y, Jin H, Kim I, Granados Vergara JD, Dong C, et al. A low power cardiovascular healthcare system with cross-layer optimization from sensing patch to cloud platform. IEEE Trans Biomed Circuits Syst 2019;13(2):314–29. 链接1

[124] Wang TW, Chu HW, Chen WX, Shih YT, Hsu PC, Cheng HM, et al. Singlechannel impedance plethysmography neck patch device for unobtrusive wearable cardiovascular monitoring. IEEE Access 2020;8:184909–19. 链接1

[125] Lin CT, Chang KC, Lin CL, Chiang CC, Lu SW, Chang SS, et al. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation. IEEE Trans Inf Technol Biomed 2010;14(3):726–33. 链接1

[126] Tseng KC, Lin BS, Liao LD, Wang YT, Wang YL. Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Syst J 2014;8(3):900–6. 链接1

[127] Huang A, Chen C, Bian K, Duan X, Chen M, Gao H, et al. WE-CARE: an intelligent mobile telecardiology system to enable mHealth applications. IEEE J Biomed Health Inform 2014;18(2):693–702. 链接1

[128] Halperin D, Heydt-Benjamin TS, Ransford B, Clark SS, Defend B, Morgan W, et al. Pacemakers and implantable cardiac defibrillators: software radio attacks and zero-power defenses. In: Proceedings of 2008 IEEE Symposium on Security and Privacy (sp 2008); 2008 May 18–22; Oakland, CA, USA. New York: IEEE; 2008. p. 129–42. 链接1

[129] Lee SY, Su YC, Liang MC, Hong JH, Hsieh CH, Yang CM, et al. A programmable implantable micro-stimulator SOC with wireless telemetry: application in closed-loop endocardial stimulation for cardiac pacemaker. In: Proceedings of 2011 IEEE International Solid-State Circuits Conference; 2011 Feb 20–24; San Francisco, CA, USA. New York: IEEE; 2011. p. 44–5. 链接1

[130] Gutruf P, Yin RT, Lee KB, Ausra J, Brennan JA, Qiao Y, et al. Wireless, batteryfree, fully implantable multimodal and multisite pacemakers for applications in small animal models. Nat Commun 2019;10(1):5742. 链接1

[131] Liu C, Jiang C, Song J, Chau KT. An effective sandwiched wireless power transfer system for charging implantable cardiac pacemaker. IEEE Trans Ind Electron 2019;66(5):4108–17. 链接1

[132] Campi T, Cruciani S, Palandrani F, De Santis V, Hirata A, Feliziani M. Wireless power transfer charging system for aimds and pacemakers. IEEE Trans Microw Theory Technol 2016;64(2):633–42. 链接1

[133] Xiao C, Wei K, Cheng D, Liu Y. Wireless charging system considering eddy current in cardiac pacemaker shell: theoretical modeling, experiments, and safety simulations. IEEE Trans Ind Electron 2017;64(5):3978–88. 链接1

[134] Abiri P, Abiri A, Packard RRS, Ding Y, Yousefi A, Ma J, et al. Inductively powered wireless pacing via a miniature pacemaker and remote stimulation control system. Sci Rep 2017;7(1):6180. 链接1

[135] Xiao C, Cheng D, Wei K. An LCC-C compensated wireless charging system for implantable cardiac pacemakers: theory, experiment, and safety evaluation. IEEE Trans Power Electron 2018;33(6):4894–905. 链接1

[136] Fontana N, Monorchio A, Torrico MOM, Hao Y. A numerical assesment of the effect of MRI surface coils on implanted pacemakers. In: Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation; 2012 Jul 8–14; Chicago, IL, USA. New York: IEEE; 2012. p. 1–2. 链接1

[137] Cruciani S, Campi T, Maradei F, Feliziani M. Numerical simulation of wireless power transfer system to recharge the battery of an implanted cardiac pacemaker. In: Proceedings of 2014 International Symposium on Electromagnetic Compatibility; 2014 Sep 1–4; Gothenburg, Sweden. New York: IEEE; 2014. p. 44–7. 链接1

[138] Vulfin V, Sayfan-Altman S, Ianconescu R. Wireless power transfer for a pacemaker application. J Med Eng Technol 2017;41(4):325–32. 链接1

[139] Asif SM, Iftikhar A, Hansen JW, Khan MS, Ewert DL, Braaten BD. A novel RFpowered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array. IEEE Access 2019;7:1139–48. 链接1

[140] Fujimoto K, James JR. Mobile antenna systems handbook. 3rd ed. Boston: Artech house; 2008. 链接1

[141] Asif SM, Hansen J, Khan MS, Walden SD, Jensen MO, Braaten BD, et al. Design and in vivo test of a batteryless and fully wireless implantable asynchronous pacing system. IEEE Trans Biomed Eng 2016;63(5):1070–81. 链接1

[142] Amundson MD, Von Arx JA, Linder WJ, Rawat P, Mass WR, inventors; Cardiac Pacemakers, Inc., assignee. Circumferential antenna for an implantable medical device. United States patent US 6456256. 2002 Sep 24.

[143] Cao Z, Chen P, Ma Z, Li S, Gao X, Wu RX, et al. Near-field communication sensors. Sensors 2019;19(18):3947. 链接1

[144] Lee S, Seo W, Ito K, Choi J. Design of an implanted compact antenna for an artificial cardiac pacemaker system. IEICE Electron Express 2011;8(24): 2112–7. 链接1

[145] Furse C. Design an antenna for pacemaker communication. Microw RF 2000;39(3):73. 链接1

[146] Zhang H, Jackson JK, Chiao M. Microfabricated drug delivery devices: design, fabrication, and applications. Adv Funct Mater 2017;27(45):1703606. 链接1

[147] Din F, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomed 2017;12:7291–309. 链接1

[148] Nafea M, Nawabjan A, Ali MS. A wirelessly-controlled piezoelectric microvalve for regulated drug delivery. Sens Actuators A Phys 2018;279:191–203. 链接1

[149] Ali MS, Takahata K. Wireless microfluidic control with integrated shapememory-alloy actuators operated by field frequency modulation. J Micromech Microeng 2011;21(7):075005. 链接1

[150] Gao W, Li J, Cirillo J, Borgens R, Cho Y. Action at a distance: functional drug delivery using electromagnetic-field-responsive polypyrrole nanowires. Langmuir 2014;30(26):7778–88. 链接1

[151] Yi Y, Kosel J. A remotely operated drug delivery system with dose control. Sens Actuators A Phys 2017;261:177–83. 链接1

[152] Li PY, Givrad TK, Sheybani R, Holschneider DP, Maarek JM, Meng E. A low power, on demand electrothermal valve for wireless drug delivery applications. Lab Chip 2010;10(1):101–10. 链接1

[153] Reddy MA, Pradhan BK, Qureshi D, Pal SK, Pal K. Internet-of-Things-enabled dual-channel iontophoretic drug delivery system for elderly patient medication management. J Med Device 2020;14(1):011104. 链接1

[154] Khan AN, Wen D, Liu Y, Sukhorukov G, Hao Y. An ultrawideband conformal antenna for implantable drug delivery device. In: Proceedings of 2020 14th European Conference on Antennas and Propagation (EuCAP); 2020 Mar 15–20; Copenhagen, Denmark. New York: IEEE; 2020. p. 1–3. 链接1

[155] Koo J, MacEwan MR, Kang SK, Won SM, Stephen M, Gamble P, et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat Med 2018;24(12):1830–6. 链接1

[156] Prescott JH, Lipka S, Baldwin S, Sheppard NF, Maloney JM, Coppeta J, et al. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat Biotechnol 2006;24(4):437–8. 链接1

[157] Liu J, Liu Z, Li X, Zhu L, Xu G, Chen Z, et al. Wireless, battery-free and wearable device for electrically controlled drug delivery: sodium salicylate released from bilayer polypyrrole by near-field communication on smartphone. Biomed Microdevices 2020;22(3):53. 链接1

[158] Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol 2008;26(11): 1261–8. 链接1

[159] Patel D, Chaudhary SA, Parmar B, Bhura N. Transdermal drug delivery system: a review. Pharma Innov 2012;1(4):66–75. 链接1

[160] Löffler S, Melican K, Nilsson KPR, Richter-Dahlfors A. Organic bioelectronics in medicine. J Intern Med 2017;282(1):24–36. 链接1

[161] Simon DT, Gabrielsson EO, Tybrandt K, Berggren M. Organic bioelectronics: bridging the signaling gap between biology and technology. Chem Rev 2016;116(21):13009–41. 链接1

[162] Boehler C, Aqrawe Z, Asplund M. Applications of PEDOT in bioelectronic medicine. Bioelectron Med 2019;2(2):89–99. 链接1

[163] Chapman CAR, Cuttaz EA, Goding JA, Green RA. Actively controlled local drug delivery using conductive polymer-based devices. Appl Phys Lett 2020;116(1): 010501. 链接1

[164] Kim H, Kwon S, Kwon YT, Yeo WH. Soft wireless bioelectronics and differential electrodermal activity for home sleep monitoring. Sensors 2021;21(2):354. 链接1

[165] Rwei AY, Lu W, Wu C, Human K, Suen E, Franklin D, et al. A wireless, skininterfaced biosensor for cerebral hemodynamic monitoring in pediatric care. Proc Natl Acad Sci USA 2020;117(50):31674–84. 链接1

[166] Gao Y, Yu L, Yeo JC, Lim CT. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv Mater 2020;32(15): 1902133. 链接1

[167] Zheng Q, Zhang H, Shi B, Xue X, Liu Z, Jin Y, et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 2016;10(7):6510–8. 链接1

[168] Ma Y, Zheng Q, Liu Y, Shi B, Xue X, Ji W, et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sensor for real-time biomedical monitoring. Nano Lett 2016;16(10):6042–51. 链接1

[169] Ouyang H, Tian J, Sun G, Zou Y, Liu Z, Li H, et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Adv Mater 2017;29(40): 1703456. 链接1

[170] Kim H, Kim YS, Mahmood M, Kwon S, Zavanelli N, Kim HS, et al. Fully integrated, stretchable, wireless skin-conformal bioelectronics for continuous stress monitoring in daily life. Adv Sci 2020;7(15):2000810. 链接1

[171] Song Y, Min J, Yu Y, Wang H, Yang Y, Zhang H, et al. Wireless battery-free wearable sweat sensor powered by human motion. Sci Adv 2020;6(40): eaay9842. 链接1

[172] Kim J, Jeerapan I, Sempionatto JR, Barfidokht A, Mishra RK, Campbell AS, et al. Wearable bioelectronics: enzyme-based body-worn electronic devices. Acc Chem Res 2018;51(11):2820–8. 链接1

[173] Kim J, Imani S, de Araujo WR, Warchall J, Valdés-Ramírez G, Paixão TRLC, et al. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens Bioelectron 2015;74:1061–8. 链接1

[174] Kim YS, Mahmood M, Lee Y, Kim NK, Kwon S, Herbert R, et al. All-in-one, wireless, stretchable hybrid electronics for smart, connected, and ambulatory physiological monitoring. Adv Sci 2019;6(17):1900939. 链接1

[175] Boe AJ, Koch LLM, O’Brien MK, Shawen N, Rogers JA, Lieber RL, et al. Automating sleep stage classification using wireless, wearable sensors. NPJ Digit Med 2019;2(1):1–9. 链接1

[176] Boucsein W. Electrodermal activity. 2nd ed. Boston: Springer; 2012. 链接1

[177] Kim H, Kim YS, Mahmood M, Kwon S, Epps F, Rim YS, et al. Wireless, continuous monitoring of daily stress and management practice via soft bioelectronics. Biosens Bioelectron 2021;173:112764. 链接1

[178] Balasubramaniam S, Wirdatmadja SA, Barros MT, Koucheryavy Y, Stachowiak M, Jornet JM. Wireless communications for optogenetics-based brain stimulation: present technology and future challenges. IEEE Commun Mag 2018;56(7):218–24. 链接1

[179] Thimot J, Shepard KL. Bioelectronic devices: wirelessly powered implants. Nat Biomed Eng 2017;1(3):1–2. 链接1

[180] Montgomery KL, Yeh AJ, Ho JS, Tsao V, Mohan Iyer S, Grosenick L, et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat Methods 2015;12(10):969–74. 链接1

[181] Burton A, Obaid SN, Vázquez-Guardado A, Schmit MB, Stuart T, Cai L, et al. Wireless, battery-free subdermally implantable photometry systems for chronic recording of neural dynamics. Proc Natl Acad Sci USA 2020;117(6):2835–45. 链接1

[182] Zhang H, Gutruf P, Meacham K, Montana MC, Zhao X, Chiarelli AM, et al. Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry. Sci Adv 2019;5(3):aaw0873. 链接1

[183] Mulberry G, White KA, Kim BN. A wirelessly powered implantable CMOS neural recording sensor array using pulse-based neural amplifier. 2019. bioRxiv:809509.

[184] Zhang Y, Mickle AD, Gutruf P, McIlvried LA, Guo H, Wu Y, et al. Battery-free, fully implantable optofluidic cuff system for wireless optogenetic and pharmacological neuromodulation of peripheral nerves. Sci Adv 2019;5(7): aaw5296. 链接1

[185] Song E, Li J, Won SM, Bai W, Rogers JA. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat Mater 2020;19(6):590–603. 链接1

[186] Cho Y, Park J, Lee C, Lee S. Recent progress on peripheral neural interface technology towards bioelectronic medicine. Bioelectron Med 2020;6(1):23. 链接1

[187] Han S, Shin G. Biodegradable optical fiber in a soft optoelectronic device for wireless optogenetic applications. Coatings 2020;10(12):1153. 链接1

[188] Wentz CT, Bernstein JG, Monahan P, Guerra A, Rodriguez A, Boyden ES. A wirelessly powered and controlled device for optical neural control of freelybehaving animals. J Neural Eng 2011;8(4):046021. 链接1

[189] Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. Sci Adv 2017;3(6): 1601649. 链接1

[190] Fiáth R, Márton AL, Mátyás F, Pinke D, Márton G, Tóth K, et al. Slow insertion of silicon probes improves the quality of acute neuronal recordings. Sci Rep 2019;9(111):1–17. 链接1

[191] Steinmetz NA, Koch C, Harris KD, Carandini M. Challenges and opportunities for large-scale electrophysiology with neuropixels probes. Curr Opin Neurobiol 2018;50:92–100. 链接1

[192] Fernández E, Greger B, House PA, Aranda I, Botella C, Albisua J, et al. Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects. Front Neuroeng 2014;7:24. 链接1

[193] Tsai AC, Huang ACW, Yu YH, Kuo CS, Hsu CC, Lim YS, et al. A wireless magnetic resonance device for optogenetic applications in an animal model. Sensors 2020;20(20):5869. 链接1

[194] Liu C, Zhao Y, Cai X, Xie Y, Wang T, Cheng D, et al. A wireless, implantable optoelectrochemical probe for optogenetic stimulation and dopamine detection. Microsyst Nanoeng 2020;6(1):64. 链接1

[195] Manoufali M, Bialkowski K, Mohammed BJ, Mills PC, Abbosh A. Near-field inductive-coupling link to power a three-dimensional millimeter-size antenna for brain implantable medical devices. IEEE Trans Biomed Eng 2018;65(1):4–14. 链接1

[196] Singer A, Dutta S, Lewis E, Chen Z, Chen JC, Verma N, et al. Magnetoelectric materials for miniature, wireless neural stimulation at therapeutic frequencies. Neuron 2020;107(4):631–43. 链接1

[197] Park SI, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat Biotechnol 2015;33(12):1280–6. 链接1

[198] Zhang Y, Castro DC, Han Y, Wu Y, Guo H, Weng Z, et al. Battery-free, lightweight, injectable microsystem for in vivo wireless pharmacology and optogenetics. Proc Natl Acad Sci USA 2019;116(43):21427–37. 链接1

相关研究