期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第10卷 第3期 doi: 10.1016/j.eng.2021.11.012

肝内区域免疫对肝移植后肿瘤复发的影响

a Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
b Department of Surgery, HKU-Shenzhen Hospital & LKS Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China

收稿日期: 2019-12-13 修回日期: 2021-11-06 录用日期: 2021-11-11 发布日期: 2021-12-08

下一篇 上一篇

摘要

肝脏恶性肿瘤是肝移植的一个主要适应症,但是肝移植后肿瘤复发却是影响受体长期生存的一个严峻临床挑战。肿瘤生物学特征、分期和移植后的免疫抑制状态一直被认为是肝癌复发的危险因素。而越来越多的证据表明,肝脏缺血再灌注(IR)对同种异体移植物的损伤则为肝移植后的肿瘤细胞侵袭性、转移性
提供了有利的免疫微环境。在活体肝移植中,边缘移植物(如小体积或脂肪移植物)的严重损伤与较低的无复发生存率之间的相关性,证实了IR 损伤与肿瘤复发之间的关联。IR 可引起肝内免疫微环境重构,包括恶化移植物损伤的促炎反应和加快组织修复的抗炎反应。然而,肝内区域免疫对移植后肿瘤复发的作
用尚不清晰。本文详述了IR 损伤诱导的肝内体液微环境和调节性区域免疫微环境,以及它们如何影响肝移植后肿瘤复发的最新研究进展。综合理解移植后肝内区域免疫,将为移植后肿瘤复发提供精准诊断、治疗和预后预测的新策略。

图片

图1

参考文献

[ 1 ] Yang JD, Larson JJ, Watt KD, Allen AM, Wiesner RH, Gores GJ, et al. Hepatocellular carcinoma is the most common indication for liver transplantation and placement on the waitlist in the United States. Clin Gastroenterol Hepatol 2017;15(5). 767–75.e3. 链接1

[ 2 ] Duffy JP, Vardanian A, Benjamin E, Watson M, Farmer DG, Ghobrial RM, et al. Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA. Ann Surg 2007;246(3):502–11. 链接1

[ 3 ] Kim WR, Stock PG, Smith JM, Heimbach JK, Skeans MA, Edwards EB, et al. OPTN/SRTR 2011 annual data report: liver. Am J Transplant 2013;13(Suppl 1):73–102. 链接1

[ 4 ] Mazzaferro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996;334(11):693–9. 链接1

[ 5 ] Man K. Recurrent malignancy: are we pushing the envelope? Liver Transpl 2017;23(S1):S81–4. 链接1

[ 6 ] Man K, Fan ST, Lo CM, Liu CL, Fung PCW, Liang TB, et al. Graft injury in relation to graft size in right lobe live donor liver transplantation: a study of hepatic sinusoidal injury in correlation with portal hemodynamics and intragraft gene expression. Ann Surg 2003;237(2):256–64. 链接1

[ 7 ] Wood KJ, Bushell A, Hester J. Regulatory immune cells in transplantation. Nat Rev Immunol 2012;12(6):417–30. 链接1

[ 8 ] Welker MW, Bechstein WO, Zeuzem S, Trojan J. Recurrent hepatocellular carcinoma after liver transplantation—an emerging clinical challenge. Transpl Int 2013;26(2):109–18. 链接1

[ 9 ] Lerut J, Iesari S, Foguenne M, Lai Q. Hepatocellular cancer and recurrence after liver transplantation: what about the impact of immunosuppression? Transl Gastroenterol Hepatol 2017;2(10):80. 链接1

[10] Knolle PA, Wohlleber D. Immunological functions of liver sinusoidal endothelial cells. Cell Mol Immunol 2016;13(3):347–53. 链接1

[11] Lu L, Zhou H, Ni M, Wang X, Busuttil R, Kupiec-Weglinski J, et al. Innate immune regulations and liver ischemia-reperfusion injury. Transplantation 2016;100(12):2601–10. 链接1

[12] Cheng Q, Ng KT, Xu A, Li CX, Liu XB, Guo DY, et al. The roles of lipocalin-2 in small-for-size fatty liver graft injury. Ann Surg 2014;260(6):1062–72. 链接1

[13] Li CX, Lo CM, Lian Q, Ng KT, Liu XB, Ma YY, et al. Repressor and activator protein accelerates hepatic ischemia reperfusion injury by promoting neutrophil inflammatory response. Oncotarget 2016;7(19):27711–23. 链接1

[14] Li CX, Ng KT, Shao Y, Liu XB, Ling CC, Ma YY, et al. The inhibition of aldose reductase attenuates hepatic ischemia-reperfusion injury through reducing inflammatory response. Ann Surg 2014;260(2):317–28. 链接1

[15] Liu H, Lo CM, Yeung OWH, Li CX, Liu XB, Qi X, et al. NLRP3 inflammasome induced liver graft injury through activation of telomere-independent RAP1/ KC axis. J Pathol 2017;242(3):284–96. 链接1

[16] Cheng Q, Ng KT, Fan ST, Lim ZX, Guo DY, Liu XB, et al. Distinct mechanism of small-for-size fatty liver graft injury—Wnt4 signaling activates hepatic stellate cells. Am J Transplant 2010;10(5):1178–88. 链接1

[17] Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, et al. Ito cells are liver-resident antigen-presenting cells for activating T cell responses. Immunity 2007;26(1):117–29. 链接1

[18] Zhai Y, Petrowsky H, Hong JC, Busuttil RW, Kupiec-Weglinski JW. Ischaemiareperfusion injury in liver transplantation—from bench to bedside. Nat Rev Gastroenterol Hepatol 2013;10(2):79–89. 链接1

[19] Rao J, Lu L, Zhai Y. T cells in organ ischemia reperfusion injury. Curr Opin Organ Transplant 2014;19(2):115–20. 链接1

[20] Berretta F, St-Pierre J, Piccirillo CA, Stevenson MM. IL-2 contributes to maintaining a balance between CD4+ Foxp3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection. J Immunol 2011;186(8):4862–71. 链接1

[21] Assadiasl S, Mooney N, Nicknam MH. Cytokines in liver transplantation. Cytokine 2021;148:155705. 链接1

[22] Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic selftolerance maintained by activated T cells expressing IL-2 receptor alphachains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995;155(3):1151–64. 链接1

[23] Liston A, Gray DH. Homeostatic control of regulatory T cell diversity. Nat Rev Immunol 2014;14(3):154–65. 链接1

[24] Oldenhove G, Bouladoux N, Wohlfert EA, Hall JA, Chou D, Dos Santos L, et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 2009;31(5):772–86. 链接1

[25] Amado IF, Berges J, Luther RJ, Mailhé MP, Garcia S, Bandeira A, et al. IL-2 coordinates IL-2-producing and regulatory T cell interplay. J Exp Med 2013;210(12):2707–20. 链接1

[26] Marie JC, Liggitt D, Rudensky AY. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-beta receptor. Immunity 2006;25(3):441–54. 链接1

[27] Chaudhry A, Samstein RM, Treuting P, Liang Y, Pils MC, Heinrich JM, et al. Interleukin-10 signaling in regulatory T cells is required for suppression of Th17 cell-mediated inflammation. Immunity 2011;34(4):566–78. 链接1

[28] Collison LW, Delgoffe GM, Guy CS, Vignali KM, Chaturvedi V, Fairweather D, et al. The composition and signaling of the IL-35 receptor are unconventional. Nat Immunol 2012;13(3):290–9. 链接1

[29] Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 2010;11 (10):889–96. 链接1

[30] Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007;25(1):267–96. 链接1

[31] Kilinc MO, Rowswell-Turner RB, Gu T, Virtuoso LP, Egilmez NK. Activated CD8+ T-effector/memory cells eliminate CD4+ CD25+ Foxp3+ T-suppressor cells from tumors via FasL mediated apoptosis. J Immunol 2009;183(12):7656–60. 链接1

[32] Laurence A, Amarnath S, Mariotti J, Kim YC, Foley J, Eckhaus M, et al. STAT3 transcription factor promotes instability of nTreg cells and limits generation of iTreg cells during acute murine graft-versus-host disease. Immunity 2012;37(2):209–22. 链接1

[33] Mantel PY, Kuipers H, Boyman O, Rhyner C, Ouaked N, Rückert B, et al. GATA3-driven Th2 responses inhibit TGF-b1-induced FOXP3 expression and the formation of regulatory T cells. PLoS Biol 2007;5(12):e329. 链接1

[34] Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 2006;24(34):5373–80. 链接1

[35] Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004;10(9):942–9. 链接1

[36] Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol 2007;25(18):2586–93. 链接1

[37] Petersen RP, Campa MJ, Sperlazza J, Conlon D, Joshi MB, Harpole Jr DH, et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer 2006;107(12):2866–72. 链接1

[38] Sato E, Olson SH, Ahn J, Bundy B, Nishikawa H, Qian F, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+ /regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci USA 2005;102(51):18538–43. 链接1

[39] Man K, Lo CM, Xiao JW, Ng KT, Sun BS, Ng IO, et al. The significance of acute phase small-for-size graft injury on tumor growth and invasiveness after liver transplantation. Ann Surg 2008;247(6):1049–57. 链接1

[40] Ling CC, Ng KT, Shao Y, Geng W, Xiao JW, Liu H, et al. Post-transplant endothelial progenitor cell mobilization via CXCL10/CXCR3 signaling promotes liver tumor growth. J Hepatol 2014;60(1):103–9. 链接1

[41] Man K, Ng KT, Lo CM, Ho JW, Sun BS, Sun CK, et al. Ischemia-reperfusion of small liver remnant promotes liver tumor growth and metastases—activation of cell invasion and migration pathways. Liver Transpl 2007;13(12):1669–77. 链接1

[42] Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324 (5930):1029–33. 链接1

[43] Qi X, Ng KT, Shao Y, Li CX, Geng W, Ling CC, et al. The clinical dignificance and potential therapeutic role of GPx3 in tumor recurrence after liver transplantation. Theranostics 2016;6(11):1934–46. 链接1

[44] Man K, Shih KC, Ng KT, Xiao JW, Guo DY, Sun CK, et al. Molecular signature linked to acute phase injury and tumor invasiveness in small-for-size liver grafts. Ann Surg 2010;251(6):1154–61. 链接1

[45] Geng W, Lo CM, Ng KT, Ling CC, Qi X, Li CX, et al. Interferon-gamma inducible protein 10 (IP10) induced cisplatin resistance of HCC after liver transplantation through ER stress signaling pathway. Oncotarget 2015;6 (29):28042–56. 链接1

[46] Cescon M, Bertuzzo VR, Ercolani G, Ravaioli M, Odaldi F, Pinna AD. Liver transplantation for hepatocellular carcinoma: role of inflammatory and immunological state on recurrence and prognosis. World J Gastroenterol 2013;19(48):9174–82. 链接1

[47] Lawrence T, Natoli G. Transcriptional regulation of macrophage polarization: enabling diversity with identity. Nat Rev Immunol 2011;11(11):750–61. 链接1

[48] Huen SC, Huynh L, Marlier A, Lee Y, Moeckel GW, Cantley LG. GM-CSF promotes macrophage alternative activation after renal ischemia/reperfusion injury. J Am Soc Nephrol 2015;26(6):1334–45. 链接1

[49] Motomura T, Shirabe K, Mano Y, Muto J, Toshima T, Umemoto Y, et al. Neutrophil-lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J Hepatol 2013;58(1):58–64. 链接1

[50] Cortez-Retamozo V, Etzrodt M, Newton A, Rauch PJ, Chudnovskiy A, Berger C, et al. Origins of tumor-associated macrophages and neutrophils. Proc Natl Acad Sci USA 2012;109(7):2491–6. 链接1

[51] Yeung OW, Lo CM, Ling CC, Qi X, Geng W, Li CX, et al. Alternatively activated (M2) macrophages promote tumour growth and invasiveness in hepatocellular carcinoma. J Hepatol 2015;62(3):607–16. 链接1

[52] Fleming BD, Mosser DM. Regulatory macrophages: setting the threshold for therapy. Eur J Immunol 2011;41(9):2498–502. 链接1

[53] DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol 2019;19(6):369–82. 链接1

[54] Mazariegos GV, Zahorchak AF, Reyes J, Chapman H, Zeevi A, Thomson AW. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. Am J Transplant 2005;5(2):314–22. 链接1

[55] Zhou ZJ, Xin HY, Li J, Hu ZQ, Luo CB, Zhou SL. Intratumoral plasmacytoid dendritic cells as a poor prognostic factor for hepatocellular carcinoma following curative resection. Cancer Immunol Immunother 2019;68 (8):1223–33. 链接1

[56] Tokita D, Mazariegos GV, Zahorchak AF, Chien N, Abe M, Raimondi G, et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. Transplantation 2008;85(3):369–77. 链接1

[57] Liu H, Ling CC, Yeung WHO, Pang L, Liu J, Zhou J, et al. Monocytic MDSC mobilization promotes tumor recurrence after liver transplantation via CXCL10/TLR4/MMP14 signaling. Cell Death Dis 2021;12(5):489. 链接1

[58] Podestà MA, Remuzzi G, Casiraghi F. Mesenchymal stromal cell therapy in solid organ transplantation. Front Immunol 2021;11:618243. 链接1

[59] Hoechst B, Voigtlaender T, Ormandy L, Gamrekelashvili J, Zhao F, Wedemeyer H, et al. Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology 2009;50 (3):799–807. 链接1

[60] Ilkovitch D, Lopez DM. The liver is a site for tumor-induced myeloid-derived suppressor cell accumulation and immunosuppression. Cancer Res 2009;69 (13):5514–21. 链接1

[61] Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM, et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a new immunoregulatory pathway. Gastroenterology 2008;135(3):871–81. 链接1

[62] Natarajan S, Thomson AW. Tolerogenic dendritic cells and myeloid-derived suppressor cells: potential for regulation and therapy of liver auto- and alloimmunity. Immunobiology 2010;215(9–10):698–703. 链接1

[63] You Y, Zhang J, Gong J, Chen Y, Li Y, Yang K, et al. Mesenchymal stromal celldependent reprogramming of Kupffer cells is mediated by TNF-a and PGE2 and is crucial for liver transplant tolerance. Immunol Res 2015;62(3):292–305. 链接1

[64] Tang J, Yang R, Lv L, Yao A, Pu L, Yin A, et al. Transforming growth factor-bexpressing mesenchymal stem cells induce local tolerance in a rat liver transplantation model of acute rejection. Stem Cells 2016;34(11):2681–92. 链接1

[65] Rosser EC, Mauri C. Regulatory B cells: origin, phenotype, and function. Immunity 2015;42(4):607–12. 链接1

[66] Alhabbab RY, Nova-Lamperti E, Aravena O, Burton HM, Lechler RI, Dorling A, et al. Regulatory B cells: development, phenotypes, functions, and role in transplantation. Immunol Rev 2019;292(1):164–79. 链接1

[67] Shao Y, Lo CM, Ling CC, Liu XB, Ng KT, Chu AC, et al. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett 2014;355(2):264–72. 链接1

[68] Unitt E, Marshall A, Gelson W, Rushbrook SM, Davies S, Vowler SL, et al. Tumour lymphocytic infiltrate and recurrence of hepatocellular carcinoma following liver transplantation. J Hepatol 2006;45(2):246–53. 链接1

[69] Mathai AM, Kapadia MJ, Alexander J, Kernochan LE, Swanson PE, Yeh MM. Role of Foxp3-positive tumor-infiltrating lymphocytes in the histologic features and clinical outcomes of hepatocellular carcinoma. Am J Surg Pathol 2012;36(7):980–6. 链接1

[70] Li CX, Ling CC, Shao Y, Xu A, Li XC, Ng KT, et al. CXCL10/CXCR3 signaling mobilized-regulatory T cells promote liver tumor recurrence after transplantation. J Hepatol 2016;65(5):944–52. 链接1

[71] Iñarrairaegui M, Melero I, Sangro B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res 2018;24(7):1518–24. 链接1

[72] Yu L, Dai Z, Wang Z, Fan J, Zhou J. Prognostic indicators for tumor recurrence after liver transplantation in hepatocellular carcinoma and related molecular targeted therapy. Oncology 2011;81(Suppl 1):116–22. 链接1

[73] Duda DG, Dima SO, Cucu D, Sorop A, Klein S, Ancukiewicz M, et al. Potential circulating biomarkers of recurrence after hepatic resection or liver transplantation in hepatocellular carcinoma patients. Cancers 2020;12(5): E1275. 链接1

[74] Siegel AB, Cohen EI, Ocean A, Lehrer D, Goldenberg A, Knox JJ, et al. Phase II trial evaluating the clinical and biologic effects of bevacizumab in unresectable hepatocellular carcinoma. J Clin Oncol 2008;26(18):2992–8. 链接1

[75] Yeganeh M, Finn RS, Saab S. Apparent remission of a solitary metastatic pulmonary lesion in a liver transplant recipient treated with sorafenib. Am J Transplant 2009;9(12):2851–4. 链接1

[76] Castell JV, Gómez-Lechón MJ, David M, Fabra R, Trullenque R, Heinrich PC. Acute-phase response of human hepatocytes: regulation of acute-phase protein synthesis by interleukin-6. Hepatology 1990;12(5):1179–86. 链接1

[77] Dufour JF. C-reactive protein, a prognostic marker in hepatocellular carcinoma. Hepatology 2013;57(6):2103–5. 链接1

[78] An HJ, Jang JW, Bae SH, Choi JY, Yoon SK, Lee MA, et al. Serum C-reactive protein is a useful biomarker for predicting outcomes after liver transplantation in patients with hepatocellular carcinoma. Liver Transpl 2012;18(12):1406–14. 链接1

[79] Kim YK, Kim SH, Lee SD, Hong SK, Park SJ. Pretransplant serum levels of Creactive protein predict prognoses in patients undergoing liver transplantation for hepatocellular carcinoma. Transplant Proc 2015;47 (3):686–93. 链接1

[80] Kornberg A, Witt U, Kornberg J, Müller K, Friess H, Thrum K. Postoperative peak serum C-reactive protein is a predictor of outcome following liver transplantation for hepatocellular carcinoma. Biomarkers 2016;21(2):152–9. 链接1

[81] Na GH, Kim DG, Han JH, Kim EY, Lee SH, Hong TH, et al. Inflammatory markers as selection criteria of hepatocellular carcinoma in living-donor liver transplantation. World J Gastroenterol 2014;20(21):6594–601. 链接1

[82] Halazun KJ, Najjar M, Abdelmessih RM, Samstein B, Griesemer AD, Guarrera JV, et al. Recurrence after liver transplantation for hepatocellular carcinoma: a new MORAL to the story. Ann Surg 2017;265(3):557–64. 链接1

[83] Wing K, Onishi Y, Prieto-Martin P, Yamaguchi T, Miyara M, Fehervari Z, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008;322 (5899):271–5. 链接1

[84] Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017;355(6332):1428–33. 链接1

[85] Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012;12(4):252–64. 链接1

[86] Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim TY, et al. the IMbrave150 Investigators. Atezolizumab plus bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med 2020;382(20):1894–905. 链接1

[87] El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017;389(10088):2492–502. 链接1

[88] Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, et al. the KEYNOTE-224 investigators. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE224): a non-randomised, open-label phase 2 trial. Lancet Oncol 2018;19 (7):940–52. 链接1

[89] Finn RS, Ryoo BY, Merle P, Kudo M, Bouattour M, Lim HY, et al. the KEYNOTE240 investigators. Pembrolizumab as second-line therapy in patients with advanced hepatocellular carcinoma in KEYNOTE-240: a randomized, doubleblind, phase III trial. J Clin Oncol 2020;38(3):193–202. 链接1

[90] De Toni EN, Gerbes AL. Tapering of immunosuppression and sustained treatment with nivolumab in a liver transplant recipient. Gastroenterology 2017;152(6):1631–3. 链接1

[91] Morales RE, Shoushtari AN, Walsh MM, Grewal P, Lipson EJ, Carvajal RD. Safety and efficacy of ipilimumab to treat advanced melanoma in the setting of liver transplantation. J Immunother Cancer 2015;3(1):22. 链接1

[92] Kuo JC, Lilly LB, Hogg D. Immune checkpoint inhibitor therapy in a liver transplant recipient with a rare subtype of melanoma: a case report and literature review. Melanoma Res 2018;28(1):61–4. 链接1

[93] Friend BD, Venick RS, McDiarmid SV, Zhou X, Naini B, Wang H, et al. Fatal orthotopic liver transplant organ rejection induced by a checkpoint inhibitor in two patients with refractory, metastatic hepatocellular carcinoma. Pediatr Blood Cancer 2017;64(12):e26682. 链接1

[94] DeLeon TT, Salomao MA, Aqel BA, Sonbol MB, Yokoda RT, Ali AH, et al. Pilot evaluation of PD-1 inhibition in metastatic cancer patients with a history of liver transplantation: the Mayo Clinic experience. J Gastrointest Oncol 2018;9 (6):1054–62. 链接1

[95] Ranganath HA, Panella TJ. Administration of ipilimumab to a liver transplant recipient with unresectable metastatic melanoma. J Immunother 2015;38 (5):211. 链接1

[96] Varkaris A, Lewis DW, Nugent FW. Preserved liver transplant after PD-1 pathway inhibitor for hepatocellular carcinoma. Am J Gastroenterol 2017;112 (12):1895–6. 链接1

[97] Munker S, De Toni EN. Use of checkpoint inhibitors in liver transplant recipients. United European Gastroenterol J 2018;6(7):970–3. 链接1

[98] Ziogas IA, Evangeliou AP, Giannis D, Hayat MH, Mylonas KS, Tohme S, et al. The role of immunotherapy in hepatocellular carcinoma: a systematic review and pooled analysis of 2,402 patients. Oncologist 2021;26(6):e1036–49. 链接1

[99] Kochenderfer JN, Wilson WH, Janik JE, Dudley ME, Stetler-Stevenson M, Feldman SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically engineered to recognize CD19. Blood 2010;116(20):4099–102. 链接1

[100] Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, et al. Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma. Clin Cancer Res 2014;20(24):6418–28. 链接1

[101] Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med 2013;368(16):1509–18. 链接1

[102] Qasim W, Brunetto M, Gehring AJ, Xue SA, Schurich A, Khakpoor A, et al. Immunotherapy of HCC metastases with autologous T cell receptor redirected T cells, targeting HBsAg in a liver transplant patient. J Hepatol 2015;62(2):486–91. 链接1

[103] Hafezi M, Lin M, Chia A, Chua A, Ho ZZ, Fam R, et al. Immunosuppressive drug-resistant armored T-cell receptor T cells for immune therapy of HCC in liver transplant patients. Hepatology 2021;74(1):200–13. 链接1

[104] Ohira M, Nishida S, Tryphonopoulos P, Tekin A, Selvaggi G, Moon J, et al. Clinical-scale isolation of interleukin-2-stimulated liver natural killer cells for treatment of liver transplantation with hepatocellular carcinoma. Cell Transplant 2012;21(7):1397–406. 链接1

[105] Wei T, Liu J, Li D, Chen S, Zhang Y, Li J, et al. Development of magnet-driven and image-guided degradable microrobots for the precise delivery of engineered stem cells for cancer therapy. Small 2020;16(41):e1906908. 链接1

[106] Li J, Li X, Luo T, Wang R, Liu C, Chen S, et al. Development of a magnetic microrobot for carrying and delivering targeted cells. Sci Robot 2018;3(19): eaat8829. 链接1

相关研究