期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第21卷 第2期 doi: 10.1016/j.eng.2021.12.017

用于电热转换、电磁屏蔽的导电陶瓷的简易大规模制备

a State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
b Deakin University, Institute for Frontier Materials, Melbourne/Geelong, Victoria, 3216, Australia

收稿日期: 2021-08-09 修回日期: 2021-11-23 录用日期: 2021-12-08 发布日期: 2022-02-25

下一篇 上一篇

摘要

通过传统瓷砖制备工艺的干压法,制备了一种碳化酚醛树脂基导电陶瓷复合材料(CCC)。首先,将导电前驱体溶液(酚醛树脂)与陶瓷前驱体均匀混合,随后在单次热处理中同时实现了碳化和陶瓷化。碳化后的材料赋予复合材料出色的电导率和可靠的循环加热特性。在12 V电压下通电10 min 后材料表面温度可达386 ℃,在20 V电压下达到400 ℃仅需48 s。红外热像图表明,热量在复合材料表面分布均匀,并且可以通过更改电路布置(串联或并联)来调节电热转换性能。此外,与普通陶瓷相比,导电陶瓷复合材料在8.2 GHz下表现出了26.2 dB的优异电磁屏蔽性能,并提升了光热转换性能。更重要的是,这种单次热处理加热生产导电陶瓷复合材料的方法成本较低,可在原有瓷砖生产线的基础上进行大规模生产。出色的电学性能促进了该陶瓷复合材料在焦耳加热(如除冰、烧水和烹饪)及电磁屏蔽中的应用。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Hu L, Wang W, He Q, Wang A, Liu C, Tian T, et al. Preparation and characterization of reduced graphene oxide-reinforced boron carbide ceramics by self-assembly polymerization and spark plasma sintering. J Eur Ceram Soc 2020;40(3):612‒21. 链接1

[ 2 ] Huang Y, Wan C. Controllable fabrication and multifunctional applications of graphene/ceramic composites. J Adv Ceram 2020;9(3):271‒91. 链接1

[ 3 ] Wei H, Yin X, Jiang F, Hou Z, Cheng L, Zhang L. Optimized design of hightemperature microwave absorption properties of CNTs/Sc2Si2O7 ceramics. J Alloys Compd 2020;823:153864. 链接1

[ 4 ] Huang Y, Yasuda K, Wan C. Intercalation: constructing nanolaminated reduced graphene oxide/silica ceramics for lightweight and mechanically reliable electromagnetic interference shielding applications. ACS Appl Mater Interfaces 2020;12(49):55148‒56. 链接1

[ 5 ] Zhang Q, Lin D, Deng B, Xu X, Nian Q, Jin S, et al. Flyweight, superelastic, electrically conductive, and flame-retardant 3D multi-nanolayer graphene/ ceramic metamaterial. Adv Mater 2017;29(28):1605506. 链接1

[ 6 ] Dai X, Cao J, Wang Z, Wang X, Chen L, Huang Y, et al. Brazing ZrO2 ceramic and TC4 alloy by novel WB reinforced Ag‒Cu composite filler: microstructure and properties. Ceram Int 2017;43(17):15296‒305. 链接1

[ 7 ] Si X, Cao J, Song X, Qu Y, Feng J. Reactive air brazing of YSZ ceramic with novel Al2O3 nanoparticles reinforced Ag‍‒‍CuO‍‒‍Al2O3 composite filler: microstructure and joint properties. Mater Des 2017;114:176‒84. 链接1

[ 8 ] Wang Z, Yuan X, Yang J, Huan Y, Gao X, Li Z, et al. 3D-printed flexible, Agcoated PNN-PZT ceramic-polymer grid-composite for electromechanical energy conversion. Nano Energy 2020;73:104737. 链接1

[ 9 ] Wang H, Diao Y, Lu Y, Yang H, Zhou Q, Chrulski K, et al. Energy storing bricks for stationary PEDOT supercapacitors. Nat Commun 2020;11(1):3882. 链接1

[10] Liu YP, Qi XH, Li L, Zhang SH, Bi T. MOF-derived PPy/carbon-coated copper sulfide ceramic nanocomposite as high-performance electrode for supercapacitor. Ceram Int 2019;45(14):17216‒23. 链接1

[11] Frąc M, Pichór W, Szołdra P, Szudek W. Cement composites with expanded graphite/paraffin as storage heater. Constr Build Mater 2021;275:122126. 链接1

[12] Ambrožič M, Lazar A, Kocjan A. Percolation threshold in ceramic composites with isotropic conducting nanoparticles. J Eur Ceram Soc 2020;40(4):1684‒91. 链接1

[13] Zhang Y, Ruan K, Shi X, Qiu H, Pan Y, Yan Y, et al. Ti3C2Tx/rGO porous composite films with superior electromagnetic interference shielding performances. Carbon 2021;175:271‒80. 链接1

[14] Santhosh B, Ionescu E, Andreolli F, Biesuz M, Reitz A, Albert B, et al. Effect of pyrolysis temperature on the microstructure and thermal conductivity of polymer-derived monolithic and porous SiC ceramics. J Eur Ceram Soc 2021;41(2):1151‒62. 链接1

[15] Singh AK, Shishkin A, Koppel T, Gupta N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos, Part B Eng 2018;149:188‒97. 链接1

[16] Tian W, Wang M, Liu Y, Wang W. Ohmic heating curing of high content fly ash blended cement-based composites towards sustainable green construction materials used in severe cold region. J Clean Prod 2020;276:123300. 链接1

[17] Tian W, Liu Y, Qi B, Wang W. Enhanced effect of carbon nanofibers on heating efficiency of conductive cementitious composites under ohmic heating curing. Cement Concr Compos 2021;117:103904. 链接1

[18] Dimov D, Amit I, Gorrie O, Barnes MD, Townsend NJ, Neves AI, et al. Ultrahigh performance nanoengineered graphene‍‒‍concrete composites for multifunctional applications. Adv Funct Mater 2018;28(23):1705183. 链接1

[19] Wang R, Xu Z, Zhuang J, Liu Z, Peng L, Li Z, et al. Highly stretchable graphene fibers with ultrafast electrothermal response for low-voltage wearable heaters. Adv Electron Mater 2017;3(2):1600425. 链接1

[20] Wang F, Wang W, Mu X, Mao J. Anisotropic conductive, tough and stretchable heater based on nacre-like crumpled graphene composite. Chem Eng J 2020;395:125183. 链接1

[21] Wang Y, Chen L, Cheng H, Wang B, Feng X, Mao Z, et al. Mechanically flexible, waterproof, breathable cellulose/polypyrrole/polyurethane composite aerogels as wearable heaters for personal thermal management. Chem Eng J 2020;402:126222. 链接1

[22] Zhang D, Xu S, Zhao X, Qian W, Bowen CR, Yang Y. Wireless monitoring of small strains in intelligent robots via a Joule heating effect in stretchable graphene‒polymer nanocomposites. Adv Funct Mater 2020;30(13):1910809. 链接1

[23] Luo F, Fan Y, Peng G, Xu S, Yang Y, Yuan K, et al. Graphene thermal emitter with enhanced joule heating and localized light emission in air. ACS Photonics 2019;6(8):2117‒25. 链接1

[24] Pan L, Liu Z, kızıltas O, Zhong L, Pang X, Wang F, et al. Carbon fiber/poly ether ether ketone composites modified with graphene for electro-thermal deicing applications. Compos Sci Technol 2020;192:108117. 链接1

[25] Lee H, Yu W, Loh KJ, Chung W. Self-heating and electrical performance of carbon nanotube-enhanced cement composites. Constr Build Mater 2020;250:118838. 链接1

[26] Liu Y, Wang M, Tian W, Qi B, Lei Z, Wang W. Ohmic heating curing of carbon fiber/carbon nanofiber synergistically strengthening cement-based composites as repair/reinforcement materials used in ultra-low temperature environment. Compos, Part A Appl Sci Manuf 2019;125:105570. 链接1

[27] Hambach M, Möller H, Neumann T, Volkmer D. Carbon fibre reinforced cement-based composites as smart floor heating materials. Compos Part B Eng 2016;90:465‒70. 链接1

[28] Ru J, Fan Y, Zhou W, Zhou Z, Wang T, Liu R, et al. Electrically conductive and mechanically strong graphene/mullite ceramic composites for highperformance electromagnetic interference shielding. ACS Appl Mater Interfaces 2018;10(45):39245‒56. 链接1

[29] Liang C, Wang Z, Wu L, Zhang X, Wang H, Wang Z. Light and strong hierarchical porous SiC foam for efficient electromagnetic interference shielding and thermal insulation at elevated temperatures. ACS Appl Mater Interfaces 2017;9(35):29950‒7. 链接1

[30] Mei H, Zhang D, Xia J, Cheng L. Effect of heat treatment on the riveted joints of two-dimensional C/SiC composites. Compos, Part B Eng 2017;120:159‒67. 链接1

[31] Zhong Q, Zhang X, Dong S, Yang J, Hu J, Gao L, et al. Reactive melt infiltrated Cf/SiC composites with robust matrix derived from novel engineered pyrolytic carbon structure. Ceram Int 2017;43(7):5832‒6. 链接1

[32] Chen S, Feng Y, Qin M, Ji T, Feng W. Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes. Carbon 2017;116:84‒93. 链接1

[33] Wang L, Ma Z, Zhang Y, Chen L, Cao D, Gu J. Polymer-based EMI shielding composites with 3D conductive networks: a mini-review. SusMat 2021;1(3):413‒31. 链接1

[34] Lassinantti Gualtieri M, Mugoni C, Guandalini S, Cattini A, Mazzini D, Alboni C, et al. Glass recycling in the production of low-temperature stoneware tiles. J Clean Prod 2018;197:1531‒9. 链接1

[35] Baccarin L, Bielefeldt W, Bragança S. Evaluation of thermodynamic simulation (FactSage) for the interpretation of the presence of phases and the firing behavior of triaxial ceramics. Ceram Int 2021;47(15):21522‒9. 链接1

[36] Ferrari S, Gualtieri A. The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci 2006;32(1‒2):73‒81.

[37] Martín-Márquez J, Rincón JM, Romero M. Mullite development on firing in porcelain stoneware bodies. J Eur Ceram Soc 2010;30(7):1599‒607. 链接1

[38] Lu W, Yu P, Jian M, Wang H, Wang H, Liang X, et al. Molybdenum disulfide nanosheets aligned vertically on carbonized silk fabric as smart textile for wearable pressure-sensing and energy devices. ACS Appl Mater Interfaces 2020;12(10):11825‒32. 链接1

[39] Ji W, Wu D, Tang W, Xi X, Su Y, Guo X, et al. Carbonized silk fabric-based flexible organic electrochemical transistors for highly sensitive and selective dopamine detection. Sens Actuators B Chem 2020;304:127414. 链接1

[40] Ptáček P, Opravil T, Šoukal F, Wasserbauer J, Másilko J, Baráček J. The influence of structure order on the kinetics of dehydroxylation of kaolinite. J Eur Ceram Soc 2013;33(13‒14):2793‒9.

[41] Li D, Tang B, Lu X, Li Q, Chen W, Dong X, et al. Simultaneous PAN carbonization and ceramic sintering for fabricating carbon fiber‒ceramic composite heaters. Appl Sci 2019;9(22):4945. 链接1

[42] Li D, Wang J, Lu X, Chen W, Dong X, Tang B, et al. One step firing of cellulose fiber and ceramic precursors for functional electro-thermal composites. Mater Des 2019;181:107941. 链接1

[43] Li D, Tang B, Lu X, Chen W, Dong X, Wang J, et al. Hierarchically carbonized silk/ceramic composites for electro-thermal conversion. Compos Part A Appl Sci Manuf 2021;141:106237. 链接1

[44] Wang L, Huang ZH, Yue M, Li M, Wang M, Kang F. Preparation of flexible phenolic resin-based porous carbon fabrics by electrospinning. Chem Eng J 2013;218:232‒7. 链接1

[45] EN ISO 10545-Part 3 Determination of water absorption, apparent porosity, apparent relative density and bulk density and Part 4 Determination of modulus of rupture and breaking strength.

[46] Zhang X, Zhao X, Xue T, Yang F, Fan W, Liu T. Bidirectional anisotropic polyimide/bacterial cellulose aerogels by freeze-drying for super-thermal insulation. Chem Eng J 2020;385:123963. 链接1

[47] Ding D, Guo L, Mu Y, Ye G, Chen L. Use of coal gangue to prepare refractory saggars with superior corrosion resistance and thermomechanical properties for the calcination of Li-ion battery cathode materials. ACS Sustain Chem Eng 2021;9(1):254‒63. 链接1

[48] Peng F, Jiang Y, Feng J, Cai H, Feng J, Li L. Thermally insulating, fiber-reinforced alumina‒silica aerogel composites with ultra-low shrinkage up to 1500 _C. Chem Eng J 2021;411:128402. 链接1

[49] Rezaei B, Pan JY, Gundlach C, Keller SS. Highly structured 3D pyrolytic carbon electrodes derived from additive manufacturing technology. Mater Des 2020;193:108834. 链接1

[50] Qian K, Zhou Q, Wu H, Fang J, Miao M, Yang Y, et al. Carbonized cellulose microsphere@void@MXene composite films with egg-box structure for electromagnetic interference shielding. Compos Part A Appl Sci Manuf 2021;141:106229. 链接1

[51] Beda A, Taberna PL, Simon P, Matei Ghimbeu C. Hard carbons derived from green phenolic resins for Na-ion batteries. Carbon 2018;139:248‒57. 链接1

[52] Cao M, Wang Q, Cheng W, Huan S, Hu Y, Niu Z, et al. A novel strategy combining electrospraying and single-step carbonization for the preparation of ultralight honeycomb-like multilayered carbon from biomass-derived lignin. Carbon 2021;179:68‒79. 链接1

[53] Mendes LF, de Siervo A, Reis de Araujo W, Longo Cesar Paixão TR. Reagentless fabrication of a porous graphene-like electrochemical device from phenolic paper using laser-scribing. Carbon 2020;159:110‒8. 链接1

[54] Talreja N, Jung S, Yen L. Phenol-formaldehyde-resin-based activated carbons with controlled pore size distribution for high-performance supercapacitors. Chem Eng J 2020;379:122332. 链接1

[55] Song P, Liu B, Liang C, Ruan K, Qiu H, Ma Z, et al. Lightweight, flexible cellulosederived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nanomicro Lett 2021;13(1):1‒17. 链接1

[56] Ma Z, Kang S, Ma J, Shao L, Wei A, Liang C, et al. High-performance and rapidresponse electrical heaters based on ultraflexible, heat-resistant, and mechanically strong aramid nanofiber/Ag nanowire nanocomposite papers. ACS Nano 2019;13(7):7578‒90. 链接1

[57] Zeng P, Tian B, Tian Q, Yao W, Li M, Wang H, et al. Screen-printed, low-cost, and patterned flexible heater based on Ag fractal dendrites for human wearable application. Adv Mater Technol 2019;4(3):1800453. 链接1

相关研究