期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第25卷 第6期 doi: 10.1016/j.eng.2022.03.023

利用三元合金保护和催化的硅光阳极与廉价硅太阳能电池相结合实现12.0%的太阳能制氢效率

International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China

收稿日期: 2021-07-30 修回日期: 2022-05-06 录用日期: 2023-05-10 发布日期: 2023-05-18

下一篇 上一篇

摘要

n型硅(n-Si)表面在水溶液中容易被氧化和钝化,导致其在光电化学(PEC)分解水中的析氧反应(OER)动力学缓慢。本工作通过欠电位沉积成功地在p+n-Si基底上电沉积了三金属Ni0.9Fe0.05Co0.05保护层。制备的Ni0.9Fe0.05Co0.05/p+n-Si光阳极具有优异的稳定性和PEC水氧化活性,具有相对低的OER起始电位(相对于可逆氢电极电势(RHE)仅为0.938 V),并且在1.23 V vs. RHE电位时具有较高的光电流密度(33.1 mA∙cm-2),显著优于Ni/p+n-Si光阳极。工作证明了Fe在Ni层的掺杂会在Ni0.9Fe0.05Co0.05/p+n-Si界面处产生较大的能带弯曲,促进界面电荷分离。此外,Co的加入会产生丰富的Ni3+和氧空位(Ov),作为活性位点可以加速OER动力学过程,协同促进PEC过程中的水氧化的活性。令人鼓舞的是,通过将Ni0.9Fe0.05Co0.05/p+n-Si光阳极连接到廉价的硅太阳能电池上,所制备的集成光伏/PEC(PV/PEC)器件实现了无偏压下高达12.0%的太阳制氢能量转换效率。这项工作提供了一种简单的方法来设计高效、稳定的n-Si基光阳极,并对其构效关系有了深刻的理解;这种方法制备的材料在集成低成本PV/PEC器件用于无辅助太阳能驱动水分解方面具有巨大的潜力。

补充材料

图片

图1

图2

图3

图4

图5

图6

参考文献

[ 1 ] Lewis NS, Nocera DG. Powering the planet: chemical challenges in solar energy utilization. Proc Natl Acad Sci USA 2006;103(43):15729‒35. Corrected in: Proc Natl Acad Sci USA 2007;104(50):20142. 链接1

[ 2 ] Vijselaar W, Kunturu PP, Moehl T, Tilley SD, Huskens J. Tandem cuprous oxide/ silicon microwire hydrogen-evolving photocathode with photovoltage exceeding 1.3 V. ACS Energy Lett 2019;4(9):2287‒94. 链接1

[ 3 ] Sun K, Shen S, Liang Y, Burrows PE, Mao SS, Wang D. Enabling silicon for solarfuel production. Chem Rev 2014;114(17):8662‒719. 链接1

[ 4 ] Chu S, Vanka S, Wang Y, Gim J, Wang Y, Ra YH, et al. Solar water oxidation by an InGaN nanowire photoanode with a bandgap of 1.7 eV. ACS Energy Lett 2018;3(2):307‒14. 链接1

[ 5 ] Shaner MR, Hu S, Sun K, Lewis NS. Stabilization of Si microwire arrays for solardriven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy Environ Sci 2015;8(1):203‒7. 链接1

[ 6 ] Mei B, Seger B, Pedersen T, Malizia M, Hansen O, Chorkendorff I, et al. Protection of p+-n-Si photoanodes by sputter-deposited Ir/IrOx thin films. J Phys Chem Lett 2014;5(11):1948‒52. 链接1

[ 7 ] Scheuermann AG, Lawrence JP, Kemp KW, Ito T, Walsh A, Chidsey CED, et al. Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nat Mater 2016;15(1):99‒105. 链接1

[ 8 ] Hu S, Shaner MR, Beardslee JA, Lichterman M, Brunschwig BS, Lewis NS. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014;344(6187):1005‒9. 链接1

[ 9 ] Yu Y, Sun C, Yin X, Li J, Cao S, Zhang C, et al. Metastable intermediates in amorphous titanium oxide: a hidden role leading to ultra-stable photoanode protection. Nano Lett 2018;18(8):5335‒42. 链接1

[10] Kenney MJ, Gong M, Li Y, Wu JZ, Feng J, Lanza M, et al. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013;342(6160):836‒40. 链接1

[11] Sun K, McDowell MT, Nielander AC, Hu S, Shaner MR, Yang F, et al. Stable solardriven water oxidation to O2(g) by Ni-oxide-coated silicon photoanodes. J Phys Chem Lett 2015;6(4):592‒8. 链接1

[12] Thalluri SM, Bai L, Lv C, Huang Z, Hu X, Liu L. Strategies for semiconductor/electrocatalyst coupling toward solar-driven water splitting. Adv Sci 2020;7(6):1902102. 链接1

[13] Hill JC, Landers AT, Switzer JA. An electrodeposited inhomogeneous metal‒insulator‒semiconductor junction for efficient photoelectrochemical water oxidation. Nat Mater 2015;14(11):1150‒5. 链接1

[14] Zhou X, Liu R, Sun K, Friedrich D, McDowell MT, Yang F, et al. Interface engineering of the photoelectrochemical performance of Ni-oxide-coated n-Si photoanodes by atomic-layer deposition of ultrathin films of cobalt oxide. Energy Environ Sci 2015;8(9):2644‒9. 链接1

[15] Oh S, Jung S, Lee YH, Song JT, Kim TH, Nandi DK, et al. Hole-selective CoOx/SiOx/ Si heterojunctions for photoelectrochemical water splitting. ACS Catal 2018;8 (10):9755‒64. 链接1

[16] Chen L, Wu S, Ma D, Shang A, Li X. Optoelectronic modeling of the Si/a-Fe2O3 heterojunction photoanode. Nano Energy 2018;43(10):177‒83. 链接1

[17] Mei B, Permyakova AA, Frydendal R, Bae D, Pedersen T, Malacrida P, et al. Irontreated NiO as a highly transparent p-type protection layer for efficient Sibased photoanodes. J Phys Chem Lett 2014;5(20):3456‒61. 链接1

[18] Cai Q, Hong W, Jian C, Liu W. Ultrafast hot ion-exchange triggered electrocatalyst modification and interface engineering on silicon photoanodes. Nano Energy 2020;70:104485. 链接1

[19] Yu X, Yang P, Chen S, Zhang M, Shi G. NiFe alloy protected silicon photoanode for efficient water splitting. Adv Energy Mater 2017;7(6):1601805. 链接1

[20] Cai Q, Hong W, Jian C, Li J, Liu W. Insulator layer engineering toward stable Si photoanode for efficient water oxidation. ACS Catal 2018;8(10):9238‒44. 链接1

[21] Li C, Huang M, Zhong Y, Zhang L, Xiao Y, Zhu H. Highly efficient NiFe nanoparticle decorated Si photoanode for photoelectrochemical water oxidation. Chem Mater 2019;31(1):171‒8. 链接1

[22] Chen J, Xu G, Wang C, Zhu K, Wang H, Yan S, et al. High-performance and stable silicon photoanode modified by crystalline Ni@amorphous Co core‒shell nanoparticles. ChemCatChem 2018;10(21):5025‒31. 链接1

[23] Lee Y, Suntivich J, May KJ, Perry EE, Shao-Horn Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J Phys Chem Lett 2012;3(3):399‒404. 链接1

[24] Stoerzinger KA, Qiao L, Biegalski MD, Shao-Horn Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J Phys Chem Lett 2014;5(10):1636‒41. 链接1

[25] Kim TJ, Park SA, Chang S, Chun HH, Kim YT. Effect of a surface area and a dband oxidation state on the activity and stability of RuOx electrocatalysts for oxygen evolution reaction. Bull Korean Chem Soc 2015;36(7):1874‒7. 链接1

[26] Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 2011;257(7):2717‒30. 链接1

[27] Biesinger MC, Payne BP, Lau LWM, Gerson A, Smart RSC. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf Interface Anal 2009;41(4):324‒32. 链接1

[28] Kim KS, Winograd N. X-ray photoelectron spectroscopic studies of nickel‒ oxygen surfaces using oxygen and argon ion-bombardment. Surf Sci 1974;43(2):625‒43. 链接1

[29] Guo B, Batool A, Xie G, Boddula R, Tian L, Jan SU, et al. Facile integration between Si and catalyst for high-performance photoanodes by a multifunctional bridging layer. Nano Lett 2018;18(2):1516‒21. 链接1

[30] Oh K, Mériadec C, Lassalle-Kaiser B, Dorcet V, Fabre B, Ababou-Girard S, et al. Elucidating the performance and unexpected stability of partially coated water-splitting silicon photoanodes. Energy Environ Sci 2018;11(9):2590‒9. 链接1

[31] Cai Q, Hong W, Jian C, Liu W. A high-performance silicon photoanode enabled by oxygen vacancy modulation on NiOOH electrocatalyst for water oxidation. Nanoscale 2020;12(14):7550‒6. 链接1

[32] Peng Z, Jia DS, Al-Enizi AM, Elzatahry AA, Zheng GF. From water oxidation to reduction: homologous Ni‒Co based nanowires as complementary water splitting electrocatalysts. Adv Energy Mater 2015;5(9):1402031. 链接1

[33] Chen JZ, Xu JL, Zhou S, Zhao N, Wong CP. Amorphous nanostructured FeOOH and Co‍‒‍Ni double hydroxides for high-performance aqueous asymmetric supercapacitors. Nano Energy 2016;21:145‒53. 链接1

[34] Dong G, Fang M, Zhang J, Wei RJ, Shu L, Liang XG, et al. In situ formation of highly active Ni‒Fe based oxygen-evolving electrocatalysts via simple reactive dip-coating. J Mater Chem A 2017;5(22):11009‒15. 链接1

[35] Yang J, Liu H, Martens WN, Frost RL. Synthesis and characterization of cobalt hydroxide, cobalt oxyhydroxide, and cobalt oxide nanodiscs. J Phys Chem C 2010;114(1):111‒9. 链接1

[36] Jiménez VM, Fernández A, Espinós JP, González-Elipe AR. The state of the oxygen at the surface of polycrystalline cobalt oxide. J Electron Spectrosc 1995;71(1):61‒71. 链接1

[37] Bao J, Zhang X, Fan B, Zhang J, Zhou M, Yang W, et al. Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew Chem Int Ed Engl 2015;54(25):7399‒404. 链接1

[38] Yang J, Cooper JK, Toma FM, Walczak KA, Favaro M, Beeman JW, et al. A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nat Mater 2017;16(3):335‒41. 链接1

[39] Asnavandi M, Yin Y, Li Y, Sun C, Zhao C. Promoting oxygen evolution reactions through introduction of oxygen vacancies to benchmark NiFe‒OOH catalysts. ACS Energy Lett 2018;3(7):1515‒20. 链接1

[40] Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation. Nat Commun 2013;4(1):2390. 链接1

[41] Gurrentz JM, Rose MJ. Non-catalytic benefits of Ni(II) binding to an Si(111)-PNP construct for photoelectrochemical hydrogen evolution reaction: metal ion induced flat band potential modulation. J Am Chem Soc 2020;142 (12):5657‒67. 链接1

[42] Wang X, Xie J, Li CM. Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J Mater Chem A 2015;3(3):1235‒42. 链接1

[43] McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 2015;137(13):4347‒57. 链接1

[44] Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016;354(6318):1414‒9. 链接1

[45] Bikkarolla SK, Papakonstantinou P. CuCo2O4 nanoparticles on nitrogenated graphene as highly efficient oxygen evolution catalyst. J Power Sources 2015;281:243‒51. 链接1

[46] Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. Water oxidation at hematite photoelectrodes: the role of surface states. J Am Chem Soc 2012;134(9):4294‒302. 链接1

[47] Fu Y, Lu YR, Ren F, Xing Z, Chen J, Guo P, et al. Surface electronic structure reconfiguration of hematite nanorods for efficient photoanodic water oxidation. Solar RRL 2020;4(1):1900349. 链接1

[48] Zhang B, Wang Z, Huang B, Zhang X, Qin X, Li H, et al. Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem Mater 2016;28(18):6613‒20. 链接1

[49] Geng W, Liu H, Yao X. Enhanced photocatalytic properties of titania‒graphene nanocomposites: a density functional theory study. Phys Chem Chem Phys 2013;15(16):6025‒33. 链接1

相关研究