期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第15卷 第8期 doi: 10.1016/j.eng.2022.04.009

可自供能感知液滴撞击的3D打印超疏水磁性器件

a State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
b State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong  University of Science and Technology, Wuhan 430074, China
c ARC Research Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton VIC 3800, Australia

收稿日期: 2021-09-06 修回日期: 2022-03-10 录用日期: 2022-04-20 发布日期: 2022-05-14

下一篇 上一篇

摘要

三维(3D)打印的软磁结构在工程和材料领域已引起广泛关注和研究。这种结构驱动形状改变的力会导致磁场分布发生变化,表明这种结构具有将机械能转化为电能的能力。在本文的研究工作中,通过整合两种3D打印方法,制造了一种具有柔性超疏水和磁性的器件。3D打印磁性器件(3DMD)在连续滴水时,表现出具有长期稳定的力电转换能力,输出电流比现有文献记录的输出电流高。结合麦克斯韦数值仿真,研究了3DMD的力电转换机理,进而指导了各种参数的调控。此外,通过连续的雨水收集,三个集成的3DMD点亮了一个商用发光二极管(LED)。这种结合了能量转换的组合型设计有望推动 3D打印领域的发展。

图片

图1

图2

图3

图4

图5

图6

图7

参考文献

[ 1 ] Kotz F, Risch P, Helmer D, Rapp BE. High-performance materials for 3D printing in chemical synthesis applications. Adv Mater 2019;31(26):1805982. 链接1

[ 2 ] Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater 2016;28(22):4449‒54. 链接1

[ 3 ] Yang Y, Li X, Zheng X, Chen Z, Zhou Q, Chen Y. 3D-printed biomimetic super-hydrophobic structure for microdroplet manipulation and oil/water separation. Adv Mater 2018;30(9):1704912. 链接1

[ 4 ] Davoodi E, Fayazfar H, Liravi F, Jabari E, Toyserkani E. Drop-on-demand high-speed 3D printing of flexible milled carbon fiber/silicone composite sensors for wearable biomonitoring devices. Addit Manuf 2020;32:101016. 链接1

[ 5 ] Kalkal A, Kumar S, Kumar P, Pradhan R, Willander M, Packirisamy G, et al. Recent advances in 3D printing technologies for wearable (bio)sensors. Addit Manuf 2021;46:102088. 链接1

[ 6 ] Kolesky DB, Truby RL, Gladman AS, Busbee TA, Homan KA, Lewis JA. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 2014;26(19):3124‒30. 链接1

[ 7 ] Gul JZ, Sajid M, Rehman MM, Siddiqui GU, Shah I, Kim KH, et al. 3D printing for soft robotics—a review. Sci Technol Adv Mater 2018;19(1):243‒62. 链接1

[ 8 ] Cooperstein I, Sachyani-Keneth E, Shukrun-Farrell E, Rosental T, Wang X, Kamyshny A, et al. Hybrid materials for functional 3D printing. Adv Mater Interfaces 2018;5(22):1800996. 链接1

[ 9 ] Podstawczyk D, Nizioł M, Szymczyk P, Wis´niewski P, Guiseppi-Elie A. 3D printed stimuli-responsive magnetic nanoparticle embedded alginate-methylcellulose hydrogel actuators. Addit Manuf 2020;34:101275. 链接1

[10] Chin SY, Poh YC, Kohler AC, Compton JT, Hsu LL, Lau KM, et al. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices. Sci Rob 2017;2(2):eaah6451. 链接1

[11] Marco C, Alcântara CCJ, Kim S, Briatico F, Kadioglu A, Bernardis G, et al. Indirect 3D and 4D printing of soft robotic microstructures. Adv Mater Technol 2019;4(9):1900332. 链接1

[12] Zhang J, Zhao S, Zhu M, Zhu Y, Zhang Y, Liu Z, et al. 3D-printed magnetic Fe3O4/MBG/PCL composite scaffolds with multifunctionality of bone regeneration, local anticancer drug delivery and hyperthermia. J Mater Chem B 2014;2(43):7583‒95. 链接1

[13] Kokkinis D, Schaffner M, Studart AR. Multimaterial magnetically assisted 3D printing of composite materials. Nat Commun 2015;6:8643. 链接1

[14] Huber C, Abert C, Bruckner F, Groenefeld M, Muthsam O, Schuschnigg S, et al. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer. Appl Phys Lett 2016;109(16):162401. 链接1

[15] Martin JJ, Fiore BE, Erb RM. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat Commun 2015;6:8641. 链接1

[16] Ji Z, Yan C, Yu B, Wang X, Zhou F. Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Adv Mater Interfaces 2017;4(22):1700629. 链接1

[17] Kim Y, Yuk H, Zhao R, Chester SA, Zhao X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 2018;558(7709):274‒9. 链接1

[18] Qi S, Guo H, Fu J, Xie Y, Zhu M, Yu M. 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Compos Sci Technol 2020;188:107973. 链接1

[19] Wu H, Wang O, Tian Y, Wang M, Su B, Yan C, et al. Selective laser sintering-based 4D printing of magnetism-responsive grippers. ACS Appl Mater Interfaces 2021;13(11):12679‒88. 链接1

[20] Ma Z, Ai J, Shi Y, Wang K, Su B. A superhydrophobic droplet-based magnetoelectric hybrid system to generate electricity and collect water simultaneously. Adv Mater 2020;32(50):2006839. 链接1

[21] Zhang X, Ai J, Ma Z, Du Z, Chen D, Zou R, et al. Magnetoelectric soft composites with a self-powered tactile sensing capacity. Nano Energy 2020;69:104391. 链接1

[22] Zhang X, Ai J, Zou R, Su B. Compressible and stretchable magnetoelectric sensors based on liquid metals for highly sensitive, self-powered respiratory monitoring. ACS Appl Mater Interfaces 2021;13(13):15727‒37. 链接1

[23] Hong H, Wei J, Yuan Y, Chen FP, Wang J, Qu X, et al. A novel composite coupled hardness with flexibleness—polylactic acid toughen with thermoplastic polyurethane. J Appl Polym Sci 2011;121(2):855‒61. 链接1

[24] Boyacioglu S, Kodal M, Ozkoc G. A comprehensive study on shape memory behavior of PEG plasticized PLA/TPU bio-blends. Eur Polym J 2020;122:109372. 链接1

[25] Wu C, Do TT, Tran P. Mechanical properties of PolyJet 3D-printed composites inspired by space-filling peano curves. Polymers 2021;13(20):3516. 链接1

[26] Zhang B, Li S, Hingorani H, Serjouei A, Larush L, Pawar AA, et al. Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. J Mater Chem B 2018;6(20):3246‒53. 链接1

[27] Lei Z, Wang Q, Wu P. A multifunctional skin-like sensor based on a 3D printed thermo-responsive hydrogel. Mater Horiz 2017;4(4):694‒700. 链接1

[28] Fuh YK, Wang BS, Tsai CY. Self-powered pressure sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Sci Rep 2017;7:6759. 链接1

[29] Haque RI, Chandran O, Lani S, Briand D. Self-powered triboelectric touch sensor made of 3D printed materials. Nano Energy 2018;52:54‒62. 链接1

[30] Chen B, Tang W, Jiang T, Zhu L, Chen X, He C, et al. Three-dimensional ultraflexible triboelectric nanogenerator made by 3D printing. Nano Energy 2018;45:380‒9. 链接1

[31] Zhao L, Liu L, Yang X, Hong H, Yang Q, Wang J, et al. Cumulative charging behavior of water droplet driven freestanding triboelectric nanogenerators toward hydrodynamic energy harvesting. J Mater Chem A 2020;8(16):7880‒8. 链接1

[32] Yang L, Wang Y, Zhao Z, Guo Y, Chen S, Zhang W, et al. Particle-laden droplet-driven triboelectric nanogenerator for real-time sediment monitoring using a deep learning method. ACS Appl Mater Interfaces 2020;12(34): 38192‒201. 链接1

[33] Hu S, Shi Z, Zheng R, Ye W, Gao X, Zhao W, et al. Superhydrophobic liquid_solid contact triboelectric nanogenerator as a droplet sensor for biomedical applications. ACS Appl Mater Interfaces 2020;12(36):40021‒30. 链接1

[34] Niu J, Xu W, Tian K, He G, Huang Z, Wang Q. Triboelectric energy harvesting of the superhydrophobic coating from dropping water. Polymers 2020;‍12(9):1936. 链接1

[35] Zhou Q, Park JG, Kim KN, Thokchom AK, Bae J, Baik JM, et al. Transparent‒flexible‍‒‍multimodal triboelectric nanogenerators for mechanical energy harvesting and self-powered sensor applications. Nano Energy 2018;48:471‒80. 链接1

[36] Su Y, Wen X, Zhu G, Yang J, Chen J, Bai P, et al. Hybrid triboelectric nanogenerator for harvesting water wave energy and as a self-powered distress signal emitter. Nano Energy 2014;9:186‒95. 链接1

[37] Su Y, Xie G, Tai H, Li S, Yang B, Wang S, et al. Self-powered room temperature NO2 detection driven by triboelectric nanogenerator under UV illumination. Nano Energy 2018;47:316‒24. 链接1

[38] Wang S, Jiang Y, Tai H, Liu B, Duan Z, Yuan Z, et al. An integrated flexible self-powered wearable respiration sensor. Nano Energy 2019;63:103829. 链接1

[39] Su Y, Wang J, Wang B, Yang T, Yang B, Xie G, et al. Alveolus-inspired active membrane sensors for self-powered wearable chemical sensing and breath analysis. ACS Nano 2020;14(5):6067‒75. 链接1

[40] Su Y, Chen C, Pan H, Yang Y, Chen G, Zhao X, et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv Funct Mater 2021;31(19):2010962. 链接1

[41] Su Y, Chen G, Chen C, Gong Q, Xie G, Yao M, et al. Self-powered respiration monitoring enabled by a triboelectric nanogenerator. Adv Mater 2021;33(35):2101262. 链接1

[42] Su Y, Yang T, Zhao X, Cai Z, Chen G, Yao M, et al. A wireless energy transmission enabled wearable active acetone biosensor for non-invasive prediabetes diagnosis. Nano Energy 2020;74:104941. 链接1

[43] Su Y, Li W, Yuan L, Chen C, Pan H, Xie G, et al. Piezoelectric fiber composites with polydopamine interfacial layer for self-powered wearable biomonitoring. Nano Energy 2021;89:106321. 链接1

[44] Kong T, Luo G, Zhao Y, Liu Z. Bioinspired superwettability micro/nanoarchitectures: fabrications and applications. Adv Funct Mater 2019;29(11):1808012. 链接1

[45] Shi J, Wang L, Dai Z, Zhao L, Du M, Li H, et al. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018;14(27):1800819. 链接1

[46] Guru BS, Hizirog˘lu HR. Electromagnetic field theory fundamentals. Cambridge: Cambridge University Press; 2005. 链接1

[47] Zhou Y, Zhao X, Xu J, Fang Y, Chen G, Song Y, et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat Mater 2021;20(12):1670‒6. 链接1

相关研究