期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2022年 第17卷 第10期 doi: 10.1016/j.eng.2022.04.022

工程饱和介质中漩涡光的调制不稳定性

Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708, USA

收稿日期: 2021-11-28 修回日期: 2022-03-29 录用日期: 2022-04-20 发布日期: 2022-08-24

下一篇 上一篇

摘要

光束在水下环境、雾、云或生物组织等混浊介质中的传播在科学和技术中有着越来越重要的应用,包括生物成像、水下和自由空间通信技术。虽然这些应用在传统上依赖于常规的线性偏振高斯光束,但光具有许多未被发掘的自由度,如自旋角动量(SAM)和轨道角动量(OAM)。本文提出了具有“旋转”自由度的复杂光束在工程化非线性胶体介质中的非线性光-物质相互作用。利用变分法和摄动法,我们考虑了非圆柱光学涡旋、椭圆光学涡旋和高阶贝塞尔光束在时间上的积分(HOBBIT),来预测这些光束演化的动力学行为和稳定性。这些结果可应用于许多强散射环境下涉及光透射的情况。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

图11

图12

图13

图14

图15

图16

图17

参考文献

[ 1 ] Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular momentum of light and the transformation of Laguerre‒Gaussian laser modes. Phys Rev A 1992;45(11):8185‒9. 链接1

[ 2 ] Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics 2011;3(2):161‒204. 链接1

[ 3 ] Willner AE, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics 2015;7(1):66‒106. 链接1

[ 4 ] Padgett M, Bowman R. Tweezers with a twist. Nat Photonics 2011;5(6):343‒8. 链接1

[ 5 ] Woerdemann M, Alpmann C, Esseling M, Denz C. Advanced optical trapping by complex beam shaping. Laser Photonics Rev 2013;7(6):839‒54. 链接1

[ 6 ] Aolita L, Walborn SP. Quantum communication without alignment using multiple-qubit single-photon states. Phys Rev Lett 2007;98(10):100501. 链接1

[ 7 ] Mair A, Vaziri A, Weihs G, Zeilinger A. Entanglement of the orbital angular momentum states of photons. Nature 2001;412(6844):313‒6. 链接1

[ 8 ] Leach J, Courtial J, Skeldon K, Barnett SM, Franke-Arnold S, Padgett MJ. Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon. Phys Rev Lett 2004;92(1):013601. 链接1

[ 9 ] Hickmann JM, Fonseca EJS, Soares WC, Chávez-Cerda S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys Rev Lett 2010;105(5):053904. 链接1

[10] Melo LA, Jesus-Silva AJ, Chávez-Cerda S, Ribeiro PHS, Soares WC. Direct measurement of the topological charge in elliptical beams using diffraction by a triangular aperture. Sci Rep 2018;8(1):6370. 链接1

[11] Alves CR, Jesus-Silva AJ, Fonseca EJS. Characterizing coherence vortices through geometry. Opt Lett 2015;40(12):2747‒50. 链接1

[12] Vaity P, Banerji J, Singh RP. Measuring the topological charge of an optical vortex by using a tilted convex lens. Phys Lett A 2013;377(15):1154‒6. 链接1

[13] Efron U, editor. Spatial light modulator technology: materials, devices, and applications. New York: Marcel Dekker Inc.; 1994. 链接1

[14] Chan WL, Chen HT, Taylor AJ, Brener I, Cich MJ, Mittleman DM. A spatial light modulator for terahertz beams. Appl Phys Lett 2009;94(21):213511. 链接1

[15] Kotlyar VV, Almazov AA, Khonina SN, Soifer VA, Elfstrom H, Turunen J. Generation of phase singularity through diffracting a plane or Gaussian beam by a spiral phase plate. J Opt Soc Am A 2005;22(5):849‒61. 链接1

[16] Khonina SN, Kotlyar VV, Shinkaryev MV, Soifer VA, Uspleniev GV. The phase rotor filter. J Mod Opt 1992;39(5):1147‒54. 链接1

[17] Marrucci L. The q-plate and its future. J Nanophoton 2013;7(1):078598. 链接1

[18] Rubano A, Cardano F, Piccirillo B, Marrucci L. q-plate technology: a progress review. J Opt Soc Am B 2019;36(5):D70‒87. 链接1

[19] Shalaev MI, Sun J, Tsukernik A, Pandey A, Nikolskiy K, Litchinitser NM. High-efficiency all-dielectric metasurfaces for ultracompact beam manipulation in transmission mode. Nano Lett 2015;15(9):6261‒6. 链接1

[20] Zhao Y, Liu XX, Alù A. Recent advances on optical metasurfaces. J Opt 2014;16(12):123001. 链接1

[21] Yu N, Capasso F. Flat optics with designer metasurfaces. Nat Mater 2014;13(2):139‒50. 链接1

[22] McGloin D, Dholakia K. Bessel beams: diffraction in a new light. Contemp Phys 2005;46(1):15‒28. 链接1

[23] Volke-Sepulveda K, Garcés-Chávez V, Chávez-Cerda S, Arlt J, Dholakia K. Orbital angular momentum of a high-order Bessel light beam. J Opt B Quantum Semiclass Opt 2002;4(2):S82‒9. 链接1

[24] Zhang K, Yuan Y, Zhang D, Ding X, Ratni B, Burokur SN, et al. Phase-engineered metalenses to generate converging and non-diffractive vortex beam carrying orbital angular momentum in microwave region. Opt Express 2018;26(2):1351‒60. 链接1

[25] Chu X. Analytical study on the self-healing property of Bessel beam. Eur Phys J D 2012;66(10):259. 链接1

[26] Vetter C, Steinkopf R, Bergner K, Ornigotti M, Nolte S, Gross H, et al. Realization of free-space long-distance self-healing Bessel beams. Laser Photonics Rev 2019;13(10):1900103. 链接1

[27] Arlt J, Garcés-Chávez V, Sibbett W, Dholakia K. Optical micromanipulation using a Bessel light beam. Opt Commun 2001;197(4‒6):239‒45.

[28] Choe Y, Kim JW, Shung KK, Kim ES. Microparticle trapping in an ultrasonic Bessel beam. Appl Phys Lett 2011;99(23):233704. 链接1

[29] Planchon TA, Gao L, Milkie DE, Davidson MW, Galbraith JA, Galbraith CG, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination. Nat Methods 2011;8(5):417‒23. 链接1

[30] Gao L, Shao L, Chen BC, Betzig E. 3D live fluorescence imaging of cellular dynamics using Bessel beam plane illumination microscopy. Nat Protoc 2014;9(5):1083‒101. 链接1

[31] Bandres MA, Gutiérrez-Vega JC. Ince‒Gaussian modes of the paraxial wave equation and stable resonators. J Opt Soc Am A 2004;21(5):873‒80. 链接1

[32] Bandres MA, Gutiérrez-Vega JC. Ince‒Gaussian beams. Opt Lett 2004;29(2):144‒6. 链接1

[33] Schwarz UT, Bandres MA, Gutiérrez-Vega JC. Observation of Ince‒Gaussian modes in stable resonators. Opt Lett 2004;29(16):1870‒2. 链接1

[34] Kotlyar VV, Khonina SN, Almazov AA, Soifer VA, Jefimovs K, Turunen J. Elliptic Laguerre‒Gaussian beams. J Opt Soc Am A 2006;23(1):43‒56. 链接1

[35] Gutiérrez-Vega JC, Iturbe-Castillo MD, Chávez-Cerda S. Alternative formulation for invariant optical fields: Mathieu beams. Opt Lett 2000;25(20):1493‒5. 链接1

[36] Chávez-Cerda S, Padgett MJ, Allison I, New GHC, Gutiérrez-Vega JC, O’Neil AT, et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J Opt B Quantum Semiclass Opt 2002;4(2):S52‒7. 链接1

[37] Brzobohatý O, Čižmár T, Zemánek P. High quality quasi-Bessel beam generated by round-tip axicon. Opt Express 2008;16(17):12688‒700. 链接1

[38] Li W, Morgan KS, Li Y, Miller JK, White G, Watkins RJ, et al. Rapidly tunable orbital angular momentum (OAM) system for higher order Bessel beams integrated in time (HOBBIT). Opt Express 2019;27(4):3920‒34. 链接1

[39] Dai K, Li W, Morgan KS, Li Y, Miller JK, Watkins RJ, et al. Second-harmonic generation of asymmetric Bessel-Gaussian beams carrying orbital angular momentum. Opt Express 2020;28(2):2536‒46. 链接1

[40] Watkins RJ, Dai K, White G, Li W, Miller JK, Morgan KS, et al. Experimental probing of turbulence using a continuous spectrum of asymmetric OAM beams. Opt Express 2020;28(2):924‒35. 链接1

[41] Dholakia K, Simpson NB, Padgett MJ, Allen L. Second-harmonic generation and the orbital angular momentum of light. Phys Rev A 1996;54(5):R3742‒5. 链接1

[42] Imoto N, Haus HA, Yamamoto Y. Quantum nondemolition measurement of the photon number via the optical Kerr effect. Phys Rev A 1985;32(4):2287‒92. 链接1

[43] Tse WK, MacDonald AH. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys Rev Lett 2010;105(5):057401. 链接1

[44] Kelley PL. Self-focusing of optical beams. Phys Rev Lett 1965;15(26):1005‒8. 链接1

[45] Shabat AB, Zakharov VE. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov Phys JETP 1972;34(1):62‒9.

[46] Berẑanskis A, Matijošius A, Piskarskas A, Smilgevičius V, Stabinis A. Conversion of topological charge of optical vortices in a parametric frequency converter. Opt Commun 1997;140(4‒6):273‒6.

[47] El-Ganainy R, Christodoulides DN, Rotschild C, Segev M. Soliton dynamics and self-induced transparency in nonlinear nanosuspensions. Opt Express 2007;15(16):10207‒18. 链接1

[48] Vinçotte A, Bergé L. Atmospheric propagation of gradient-shaped and spinning femtosecond light pulses. Physica D 2006;223(2):163‒73. 链接1

[49] Silahli SZ, Walasik W, Litchinitser NM. Necklace beam generation in nonlinear colloidal engineered media. Opt Lett 2015;40(24):5714‒7. 链接1

[50] Walasik W, Silahli SZ, Litchinitser NM. Dynamics of necklace beams in nonlinear colloidal suspensions. Sci Rep 2017;7(1):11709. 链接1

[51] Sun J, Silahli SZ, Walasik W, Li Q, Johnson E, Litchinitser NM. Nanoscale orbital angular momentum beam instabilities in engineered nonlinear colloidal media. Opt Express 2018;26(5):5118‒25. 链接1

[52] Arlt J, Dholakia K. Generation of high-order Bessel beams by use of an axicon. Opt Commun 2000;177(1‒6):297‒301.

[53] Liu C, Liu J, Niu L, Wei X, Wang K, Yang Z. Terahertz circular airy vortex beams. Sci Rep 2017;7(1):3891. 链接1

[54] Thaning A, Jaroszewicz Z, Friberg AT. Diffractive axicons in oblique illumination: analysis and experiments and comparison with elliptical axicons. Appl Opt 2003;42(1):9‒17. 链接1

[55] Bin Z, Zhu L. Diffraction property of an axicon in oblique illumination. Appl Opt 1998;37(13):2563‒8. 链接1

[56] Rasmussen JJ, Rypdal K. Blow-up in nonlinear Schroedinger equations-I a general review. Phys Scr 1986;33(6):481‒97. 链接1

[57] Firth WJ, Skryabin DV. Optical solitons carrying orbital angular momentum. Phys Rev Lett 1997;79(13):2450‒3. 链接1

[58] Skryabin DV, Firth WJ. Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media. Phys Rev E 1998;58(3):3916‒30. 链接1

[59] Desyatnikov AS, Kivshar YS. Necklace-ring vector solitons. Phys Rev Lett 2001;87(3):033901. 链接1

[60] Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. Mineola: Dover Publications, Inc.; 2000.

[61] Jackson JD. Classical electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc.; 1999.

[62] Garnett JCM. Colours in metal glasses and in metallic films. Phil Trans A 1904;203:385‒420. 链接1

[63] Fardad S, Salandrino A, Heinrich M, Zhang P, Chen Z, Christodoulides DN. Plasmonic resonant solitons in metallic nanosuspensions. Nano Lett 2014;14(5):2498‒504. 链接1

[64] El-Ganainy R, Christodoulides DN, Musslimani ZH, Rotschild C, Segev M. Optical beam instabilities in nonlinear nanosuspensions. Opt Lett 2007;32(21):3185‒7. 链接1

[65] Van Roey J, van der Donk J, Lagasse PE. Beam-propagation method: analysis and assessment. J Opt Soc Am 1981;71(7):803‒10. 链接1

[66] Chung Y, Dagli N. An assessment of finite difference beam propagation method. IEEE J Quantum Electron 1990;26(8):1335‒9. 链接1

[67] Kovalev AA, Kotlyar VV, Porfirev AP. Asymmetric Laguerre‒Gaussian beams. Phys Rev A 2016;93(6):063858. 链接1

[68] Zhu X, Kahn JM. Free-space optical communication through atmospheric turbulence channels. IEEE Trans Commun 2002;50(8):1293‒300. 链接1

[69] Conan JM, Rousset G, Madec PY. Wave-front temporal spectra in high-resolution imaging through turbulence. J Opt Soc Am A 1995;12(7):1559‒70. 链接1

[70] Fan Y, Arwatz G, Van Buren TW, Hoffman DE, Hultmark M. Nanoscale sensing devices for turbulence measurements. Exp Fluids 2015;56(7):138. 链接1

[71] Bonesi M, Churmakov DY, Ritchie LJ, Meglinski IV. Turbulence monitoring with doppler optical coherence tomography. Laser Phys Lett 2007;4(4):304‒7. 链接1

相关研究