期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第24卷 第5期 doi: 10.1016/j.eng.2022.06.015

高功率便携式生物质燃烧驱动温差发电机的研发

Department of Energy and Environment System Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China

收稿日期: 2021-09-05 修回日期: 2022-02-15 录用日期: 2022-06-17 发布日期: 2022-08-03

下一篇 上一篇

摘要

利用生物质燃烧产生电力是贫困地区解决照明、通信和医疗等基本需求的重要方式。本文开发和测试了一种高功率便携式生物质燃烧驱动的温差发电机(biomass-combustion-powered thermoelectric generator, BCP-TEG),详细研究了其温差分布、功率负载特性和不同层级的效率,并开展了现场应用测试。研究结果发现该温差发电机在自身质量为7.6 kg 的条件下可同时产生750 W的热力和23.4 W的电力,热电联供效率达到32.3%。温差发电机的发电净功率密度为2.41 W·kg−1,均高于文献报道的所有基于闭式循环冷却的发电净功率密度。此外,利用本文开发的温差发电机,燃烧1 kg 的木条所发出的电能可充满一个容量为6.2 A·h 的3.7 V锂电池。最后,本文详细讨论了BCP-TEG 研究领域存在的问题和未来可研究的方向。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Rowling M. COVID-19 further threatens access to electricity for people living in poverty [Internet]. London: Thomson Reuters Foundation; 2020 May 28 [cited 2021 June 22]. Available from: http://news.trust.org/climate. 链接1

[ 2 ] Twaha S, Zhu J, Yan Y, Li B. A comprehensive review of thermoelectric technology: materials, applications, modeling and performance improvement. Renew Sustain Energy Rev 2016;65:698‒726. 链接1

[ 3 ] Gao HB, Huang GH, Li HJ, Qu ZG, Zhang YJ. Development of stove-powered thermoelectric generators: a review. Appl Therm Eng 2016;96:297‒310. 链接1

[ 4 ] Killander A, Bass JC. A stove-top generator for cold areas. In: 15th international conference on thermoelectrics, Proceedings ICT ’96; 1996 Mar 26‒29; Pasadena, CA, USA. Piscataway: IEEE; 1996. p. 390‒3. 链接1

[ 5 ] Nuwayhid RY, Rowe DM, Min G. Low cost stove-top thermoelectric generator for regions with unreliable electricity supply. Renew Energy 2003;28(2):205‒22. 链接1

[ 6 ] Nuwayhid RY, Hamade R. Design and testing of a locally made loop-type thermosyphonic heat sink for stove-top thermoelectric generators. Renew Energy 2005;30(7):1101‒16. 链接1

[ 7 ] Nuwayhid RY, Shihadeh A, Ghaddar N. Development and testing of a domestic woodstove thermoelectric generator with natural convection cooling. Energy Convers Manage 2005;46(9‒10):1631‒43.

[ 8 ] Lertsatitthanakorn C. Electrical performance analysis and economic evaluation of combined biomass cook stove thermoelectric (BITE) generator. Bioresour Technol 2007;98(8):1670‒4. 链接1

[ 9 ] Rinalde GF, Juanico LG, Taglialavore E, Gortari S, Molina MG. Development of thermoelectric generators for electrification of isolated rural homes. Int J Hydrogen Energy 2010;35(11):5818‒22. 链接1

[10] Champier D, Bédécarrats JP, Rivaletto M, Strub F. Thermoelectric power generation from biomass cook stoves. Energy 2010;35(2):935‒42. 链接1

[11] Champier D, Bédécarrats JP, Kousksou T, Rivaletto M, Strub F, Pignolet P. Study of a TE (thermoelectric) generator incorporated in a multifunction wood stove. Energy 2011;36(3):1518‒26. 链接1

[12] Goudarzi AM, Mazandarani P, Panahi R, Behsaz H, Renania A, Rosendahl LA. Integration of thermoelectric generators and wood stove to produce heat, hot water, and electrical power. J Electron Mater 2013;42(7):2127‒33. 链接1

[13] O’Shaughnessy SM, Deasy MJ, Kinsella CE, Doyle JV, Robinson AJ. Small scale electricity generation from a portable biomass cookstove: Prototype design and preliminary results. Appl Energy 2013;102:374‒85. 链接1

[14] Raman P, Ram NK, Gupta R. Development, design and performance analysis of a forced draft clean combustion cookstove by a thermo electric generator with multi-utility options. Energy 2014;69(5):813‒25. 链接1

[15] Mal R, Prasad R, Vijay VK. Design and performance evaluation of thermoelectric generator stove and comparison with traditional, natural and forced draft stoves. Int J Energ Policy 2015;11(3):220‒33. 链接1

[16] Mal R, Prasad R, Vijay VK. Multi-functionality clean biomass cookstove for off-grid areas. Process Saf Environ 2016;104(Pt A):85‒94. 链接1

[17] Najjar YSH, Kseibi M. Heat transfer and performance analysis of thermoelectric stoves. Appl Therm Eng 2016;102(6):1045‒58. 链接1

[18] Sornek K, Filipowicz M, Rzepka K. The development of a thermoelectric power generator dedicated to stove-fireplaces with heat accumulation systems. Energy Convers Manage 2016;125:185‒93. 链接1

[19] Najjar YSH, Kseibi M. Evaluation of experimental JUST thermoelectric stove for electricity-deprived regions. Renew Sustain Energy Rev 2017;69(3):854‒61. 链接1

[20] Li G, Yi M, Tulu M, Zheng Y, Guo W, Tang Y. Miniature self-powering and self-aspirating combustion-powered thermoelectric generator burning gas fuels for combined heat and power supply. J Power Sources 2021;506(9):230263. 链接1

[21] Montecucco A, Siviter J, Knox AR. Combined heat and power system for stoves with thermoelectric generators. Appl Energy 2017;185(Pt 2):1336‒42. 链接1

[22] Deasy MJ, O’Shaughnessy SM, Archer L, Robinson AJ. Electricity generation from a biomass cookstove with MPPT power management and passive liquid cooling. Energy Sustain Dev 2018;43(4):162‒72. 链接1

[23] Obernberger I, Weiß G, Kӧssl M. Development of a new micro CHP pellet stove technology. Biomass Bioenergy 2018;116:198‒204. 链接1

[24] Li G, Zhang S, Zheng Y, Zhu L, Guo W. Experimental study on a stove-powered thermoelectric generator (STEG) with self starting fan cooling. Renew Energy 2018;121:502‒12. 链接1

[25] Sornek K, Filipowicz M, Żoɫądek M, Kot R, Mikrut M. Comparative analysis of selected thermoelectric generators operating with wood-fired stove. Energy 2019;166:1303‒13. 链接1

[26] Li G, Zheng Y, Hu J, Guo W. Experimental and a simplified theoretical model for a water-cooled, stove-powered thermoelectric generator. Energy 2019;185:437‒48. 链接1

[27] Li G, Zheng Y, Lv H, Hu J, Li J, Guo W. Micro combined heat and power system based on stove-powered thermoelectric generator. Renew Energy 2020;155(8):160‒71. 链接1

[28] Li G, Zheng Y, Guo W, Zhu D, Tang Y. Mesoscale combustor-powered thermoelectric generator: experimental optimization and evaluation metrics. Appl Energy 2020;272(8):115234. 链接1

[29] Shen Z, Tian L, Liu X. Automotive exhaust thermoelectric generators: current status, challenges and future prospects.Energy Convers. Manage 2019;195(9):1138‒73. 链接1

[30] Maccarty N, Ogle D, Still D, Bond T, Roden C. A laboratory comparison of the global warming impact of five major types of biomass cooking stoves. Energy Sustain Dev 2008;12(2):56‒65. 链接1

[31] O’Shaughnessy SM, Deasy MJ, Doyle JV, Robinson AJ. Performance analysis of a prototype small scale electricity-producing biomass cooking stove. Appl Energy 2015;156(10):566‒76. 链接1

[32] Shimokuri D, Taomoto Y, Matsumoto R. Development of a powerful miniature power system with a meso-scale vortex combustor. Proc Combust Inst 2017;36(3):4253‒60. 链接1

[33] Abedi H, Migliorini F, Dondè R, DeIuliis S, Passaretti F, Fanciulli C. Small size thermoelectric power supply for battery backup. Energy 2019;188(12):116061. 链接1

[34] Mustafa KF, Abdullah S, Abdullah MZ, Sopian K. A review of combustion-driven thermoelectric (TE) and thermophotovoltaic (TPV) power systems. Renew Sustain Energy Rev 2017;71(5):572‒84. 链接1

[35] Rowe DM, Gao M. Evaluation of thermoelectric modules for power generation. J Power Sources 1998;73(2):193‒8. 链接1

相关研究