期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第26卷 第7期 doi: 10.1016/j.eng.2022.06.020

面向城镇住宅建筑光伏一体化的GIS开放数据协同仿真平台

a Interuniversity Department of Regional and Urban Studies and Planning, Politecnico di Torino, Torino 10129, Italy
b Department of Energy “Galileo Ferraris”, Politecnico di Torino, Torino 10129, Italy
c Department of Control and Computer Engineering, Politecnico di Torino, Torino 10129, Italy

收稿日期: 2022-01-25 修回日期: 2022-06-19 录用日期: 2022-06-28 发布日期: 2022-08-27

下一篇 上一篇

摘要

人们对环境问题和可再生能源(RES)增长的认识在不断深入,使得能源生产领域开始转向RES如光伏发电(PV)系统,并朝着分布式发电(DG)的能源生产模式迈进,这种模式要求能源在本地产生、储存和消耗。本研究提出了一种将基于地理信息系统(GIS)的光伏发电潜力评估程序与能源生产和消费概况估算模型相结合的方法。特别地,创建了一种新的基础设施,可在分析家庭用电需求的同时,协同仿真建筑物屋顶的光伏发电集成。本文所提出的模型基于高时空分辨率,并考虑了阴影的影响以及真实天空条件下的太阳辐射估算。该模型结合了多种以高时间分辨率估算能源需求的方法,并考虑了真实人口的现实消费情况。这套方案提出具体建议,以促进对城市能源系统的了解,并在未来智慧城市的背景下整合RES。在意大利都灵市对所提出的方法进行了测试和验证。估算了整个城市居住区(仿真现实人口)消耗的电能,以及在建筑物屋顶安装光伏系统可产生的电能(考虑了两种不同的方案,前者仅适用于住宅建筑物的屋顶,后者适用于所有可用的屋顶)。通过对所得结果进行深入分析,考察了该平台的功能。介绍了生成的电力和能源概况,强调了时空分辨率结果的灵活性。此外,还介绍了其他能源指标,如生产能源中的自我消耗和避免二氧化碳排放。

补充材料

图片

Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

参考文献

[ 1 ] Commission E. The European Green Deal. Brussels: European Commission; 2019 Dec 12. 链接1

[ 2 ] Dóci G, Vasileiadou E, Petersen AC. Exploring the transition potential of renewable energy communities. Futures 2015;66:85–95. 链接1

[ 3 ] The European Parliament and the Council of the European Union. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. Off J Eur Union 2018;L328:82–209.

[ 4 ] Caramizaru A, Uihlein A. Energy communities: an overview of energy and social innovation. JRC Science for Police Report. Luxembourg: Publications Office of the European Union; 2020.

[ 5 ] Lowitzsch J. Investing in a renewable future-renewable energy communities, consumer (co-)ownership and energy sharing in the clean energy package. Eur Energy Clim J 2020;9(2–3):45–70. 链接1

[ 6 ] Rose A, Vadari S, Wigle L. How the internet of things will enable vast new levels of efficiency. In: 2014 ACEEE Summer Study on Energy Efficiency in Buildings; 2014 Aug 17–23; Pacific Grove, CA, USA. Washington, DC: Office of Energy Efficiency & Renewable Energy; 2014. p. 295–307.

[ 7 ] Bottaccioli L, Patti E, Macii E, Acquaviva A. Distributed infrastructure for multienergy-systems modelling and co-simulation in urban districts. In: Proceedings of the 7th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS 2018); 2018 Mar 16–18; Funchal, Portugal. Setúbal: Science and Technology Publications, Lda; 2018. p. 262–9.

[ 8 ] Connolly T, College B. Understanding GIS—the ARC/INFO method [Internet]. Redlands: Environmental System Research Institute; 1992 [cited 2022 Jan 12]. Available from: http://www.ciesin.org/docs/005-331/005-331.html.

[ 9 ] Resch B, Sagl G, Törnros T, Bachmaier A, Eggers JB, Herkel S, et al. GIS-based planning and modeling for renewable energy: challenges and future research avenues. ISPRS Int J Geo-inf 2014;3(2):662–92. 链接1

[10] Suri M, Huld T, Cebecauer TÁ, Dunlop ED. Geographic aspects of photovoltaics in Europe: contribution of the PVGIS website. IEEE J Sel Top Appl Earth Obs Remote Sens 2008;1(1):34–41. 链接1

[11] HOMER [Internet]. Golden: National Renewable Energy Laboratory (NREL); 2009 [cited 2021 Mar 12]. Available from: https://www.nrel.gov/homer. 链接1

[12] Lund H, Thellufsen JZ, Ostergaard PA, Sorknaes P, Skov IR, Mathiesen BV. EnergyPLAN–Advanced analysis of smart energy systems. Smart Energy 2021;1:100007.

[13] Wiginton LK, Nguyen HT, Pearce JM. Quantifying rooftop solar photovoltaic potential for regional renewable energy policy. Comput Environ Urban Syst 2010;34(4):345–57. 链接1

[14] Bergamasco L, Asinari P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: application to Piedmont Region (Italy). Sol Energy 2011;85(5):1041–55. 链接1

[15] Bergamasco L, Asinari P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: further improvements by ortho-image analysis and application to Turin (Italy). Sol Energy 2011;85(11):2741–56. 链接1

[16] Mainzer K, Killinger S, McKenna R, Fichtner W. Assessment of rooftop photovoltaic potentials at the urban level using publicly available geodata and image recognition techniques. Sol Energy 2017;155:561–73. 链接1

[17] Assouline D, Mohajeri N, Scartezzini JL. Quantifying rooftop photovoltaic solar energy potential: a machine learning approach. Sol Energy 2017;141:278–96. 链接1

[18] Kodysh JB, Omitaomu OA, Bhaduri BL, Neish BS. Methodology for estimating solar potential on multiple building rooftops for photovoltaic systems. Sustain Cities Soc 2013;8:31–41. 链接1

[19] Hofierka J, Kanˇuk J. Assessment of photovoltaic potential in urban areas using open-source solar radiation tools. Renew Energy 2009;34(10):2206–14. 链接1

[20] Brito MC, Gomes N, Santos T, Tenedório JA. Photovoltaic potential in a Lisbon suburb using LiDAR data. Sol Energy 2012;86(1):283–8. 链接1

[21] Nguyen HT, Pearce JM. Incorporating shading losses in solar photovoltaic potential assessment at the municipal scale. Sol Energy 2012;86(5):1245–60. 链接1

[22] Agugiaro G, Nex F, Remondino F, De Filippi R, Droghetti S, Furlanello C. Solar radiation estimation on building roofs and web-based solar cadastre. In: Proceeding of the ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 2012 Aug 25–Sep 1; Melbourne, VIC, Australia; 2012. p. 177–82.

[23] Bottaccioli L, Patti E, Macii E, Acquaviva A. GIS-based software infrastructure to model PV generation in fine-grained spatio-temporal domain. IEEE Syst J 2018;12(3):2832–41. 链接1

[24] Litjens GBMA, Kausika BB, Worrell E, van Sark WGJHM. A spatio-temporal cityscale assessment of residential photovoltaic power integration scenarios. Sol Energy 2018;174:1185–97. 链接1

[25] Ramirez Camargo L, Zink R, Dorner W, Stoeglehner G. Spatio-temporal modeling of roof-top photovoltaic panels for improved technical potential assessment and electricity peak load offsetting at the municipal scale. Comput Environ Urban Syst 2015;52:58–69. 链接1

[26] Groppi D, de Santoli L, Cumo F, Astiaso GD. A GIS-based model to assess buildings energy consumption and usable solar energy potential in urban areas. Sustain Cities Soc 2018;40:546–58. 链接1

[27] Luthander R, Lingfors D, Munkhammar J, Widén J. Self-consumption enhancement of residential photovoltaics with battery storage and electric vehicles in communities. In: Proceedings of the ECEEE Summer Study on Energy Efficiency: First Fuel Now; 2015 Jun 1–6; Hyères, France. Stockholm: European Council for an Energy Efficient Economy (eceee); 2015. p. 991–1002.

[28] Girardin L, Marechal F, Dubuis M, Calame-Darbellay N, Favrat D. EnerGis: a geographical information based system for the evaluation of integrated energy conversion systems in urban areas. Energy 2010;35(2):830–40. 链接1

[29] Berkeley Lab. Microgrids at Berkeley Lab [Internet]. Berkeley: Department of Energy National Laboratory Managed by the University of California; 2000 [cited 2022 Jan 12]. Available from: https://gridintegration.lbl.gov/der-cam. 链接1

[30] Alhamwi A, Medjroubi W, Vogt T, Agert C. Development of a GIS-based platform for the allocation and optimisation of distributed storage in urban energy systems. Appl Energy 2019;251:113360. 链接1

[31] Fonseca JA, Nguyen TA, Schlueter A, Marechal F. City Energy Analyst (CEA): integrated framework for analysis and optimization of building energy systems in neighborhoods and city districts. Energy Build 2016;113:202–26. 链接1

[32] Ruiz-Arias JA, Cebecauer T, Tovar-Pescador J, Šúri M. Spatial disaggregation of satellite-derived irradiance using a high-resolution digital elevation model. Sol Energy 2010;84(9):1644–57. 链接1

[33] Haurant P, Muselli M, Pillot B, Oberti P. Disaggregation of satellite derived irradiance maps: evaluation of the process and application to Corsica. Sol Energy 2012;86(11):3168–82. 链接1

[34] Ramirez Camargo L, Dorner W. Integrating satellite imagery-derived data and GIS-based solar radiation algorithms to map solar radiation in high temporal and spatial resolutions for the province of Salta, Argentina. In: Proceedings of Earth Resources and Environmental Remote Sensing/GIS Applications VII, 100050E; 2016 Oct 18; Edinburgh, UK. Washington, DC: Society of PhotoOptical Instrumentation Engineers (SPIE); 2016.

[35] Fu P, Rich PM. Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales. In: Proceedings of the Nineteenth Annual ESRI User Conference; 1999 Jul 26–30; San Diego, CA, USA; 1999.

[36] European Commission. Photovoltaic geographical information system [Internet]. Brussels: European Commission; 2020 Mar 1 [cited 2022 Jan 12]. Available from: http://re.jrc.ec.europa.eu/pvgis/apps4/pvest. 链接1

[37] Marion B, Anderberg M, Gray-Hann P. Recent revisions to PVWATTS. In: 2005 DOE Solar Energy Technologies Program Review Meeting; 2005 Nov 7–10; Denver, CO, USA. Washington, DC: US Department of Energy Office of Scientific and Technical Information; 2005.

[38] de Sousa L, Eykamp C, Leopold U, Baume O, Braun C. iGUESS-a web based system integrating urban energy planning and assessment modelling for multi-scale spatial decision making. In: Seppelt R, Voinov AA, Lange S, Bankamp D. editors. Proceedings of the 6th International Congress on Environmental Modelling and Software; 2012 Jul 1; Leipzig, Germany. Barcelona: International Environmental Modelling and Software Society; 2012.

[39] Mohajeri N, Assouline D, Guiboud B, Bill A, Gudmundsson A, Scartezzini JL. A city-scale roof shape classification using machine learning for solar energy applications. Renew Energy 2018;121:81–93. 链接1

[40] Miyazaki H, Kuwata K, Ohira W, Guo Z, Shao X, Xu Y, et al. Development of an automated system for building detection from high-resolution satellite images. In: Proceedings of the 4th International Workshop on Earth Observation and Remote Sensing Applications (EORSA); 2016 Aug 29; Guangzhou, China. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2016. p. 245–9.

[41] Dwivedi UK, Guo Z, Miyazaki H, Batran M, Shibasaki R. Development of population distribution map and automated human settlement map using high resolution remote sensing images. In: Proceedings of 2018 IEEE International Geoscience and Remote Sensing Symposium; 2018 Jul 22–27; Valencia, Spain. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2018. p. 7224–7.

[42] Robinson D, Campbell N, Gaiser W, Kabel K, Le-Mouel A, Morel N, et al. SUNtool—a new modelling paradigm for simulating and optimising urban sustainability. Sol Energy 2007;81(9):1196–211. 链接1

[43] Alhamwi A, Medjroubi W, Vogt T, Agert C. GIS-based urban energy systems models and tools: introducing a model for the optimisation of flexibilisation technologies in urban areas. Appl Energy 2017;191:1–9. 链接1

[44] Pagani GA, Aiello M. From the grid to the smart grid, topologically. Phys A 2016;449:160–75. 链接1

[45] Aiello M, Fiorini L, Georgievski I. Handbook of smart energy systems. Berlin: Springer; 2021. 链接1

[46] Fowler M, Lewis J. Microservices: a definition of this new architectural term [Internet]. Chicago: Martin Fowler; 2014 Mar 25 [cited 2022 Jan 12]. Available from: https://martinfowler.com/articles/microservices.html. 链接1

[47] Newman S. Building microservices: designing fine-grained systems. Cambridge: O’Reilly Media; 2015. 链接1

[48] Bottaccioli L, Di Cataldo S, Acquaviva A, Patti E. Realistic multi-scale modeling of household electricity behaviors. IEEE Access 2019;7:2467–89. 链接1

[49] Younes S, Claywell R, Muneer T. Quality control of solar radiation data: present status and proposed new approaches. Energy 2005;30(9):1533–49. 链接1

[50] Grandjean A, Adnot J, Binet G. A review and an analysis of the residential electric load curve models. Renew Sustain Energy Rev 2012;16(9):6539–65. 链接1

[51] Torriti J. A review of time use models of residential electricity demand. Renew Sustain Energy Rev 2014;37:265–72. 链接1

[52] Istituto Nazionale di Statistica (ISTAT). Household energy consumption: public use micro.stat files. Rome: ISTAT; 2017.

[53] Lang T, Gloerfeld E, Girod B. Don’t just follow the sun. A global assessment of economic performance for residential building photovoltaics. Renew Sustain Energy Rev 2015;42:932–51. 链接1

[54] Paul BM, Doyle J, Stabler B, Freedman J, Bettinardi AO. Multi-level population synthesis using entropy maximization-based simultaneous list balancing. In: Transportation Research Board 97th Annual Meeting; 2018 Jan 7–11; Washington. DC, USA. Washington, DC: National Academy of Sciences; 2018.

[55] Metropolitan Planning Organizations (MPOs). ActivitySim [Internet], San Francisco: GitHub, Inc.; 2015 [cited 2019 Sep 13]. Available from: https:// activitysim.github.io/. 链接1

[56] Weather Underground [Internet]. Atlanta: The Weather Company; 2014 [cited 2022 Jan 12]. Available from: https://www.wunderground.com/. 链接1

[57] Istituto Nazionale di Statistica (ISTAT). Multipurpose survey on householdstime use: public use micro.stat files. Rome: ISTAT; 2018.

[58] Reinhardt A, Baumann P, Burgstahler D, Hollick M, Chonov H, Werner M. et al. On the accuracy of appliance identification based on distributed load metering data. In: Proceedings of 2012 Sustainable Internet and ICT for Sustainability (SustainIT); 2012 Oct 4–5; Pisa, Italy. New York City: Institute of Electrical and Electronics Engineers (IEEE); 2012. p. 1–9.

[59] Bottaccioli L, Macii E, Patti E, Estebsari A, Pons E, Acquaviva A. PVInGrid: a distributed infrastructure for evaluating the integration of photovoltaic systems in smart grid. In: Camarinha-Matos L, Parreira-Rocha M, Ramezani J, editors. Proceedings of the 8th IFIPWG5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems; 2019 May 3–5; Costa de Caparica, Portugal. Berlin: Springer; 2017. p. 316–24.

[60] Bottaccioli L, Estebsari A, Pons E, Bompard E, Macii E, Patti E, et al. A flexible distributed infrastructure for real-time cosimulations in smart grids. IEEE Trans Ind Inf 2017;13(6):3265–74. 链接1

[61] Molitor C, Gross S, Zeitz J, Monti A. MESCOS—a multienergy system cosimulator for city district energy systems. IEEE Trans Ind Inf 2014;10 (4):2247–56. 链接1

[62] The European Parliament and the Council of the European Union. Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency. Off J Eur Union 2018;L156:75–91.

[63] Commission E. Harmonised European time use surveys. Luxembourg: Eurostat; 2010. 链接1

[64] Istituto Nazionale di Statistica (ISTAT). Italian general censuses of population and housing. Rome: ISTAT; 2011.

[65] Amme J, Pleßmann G, Bühler J, Hülk L, Kötter E, Schwaegerl P. The eGo grid model: an open-source and open-data based synthetic medium-voltage grid model for distribution power supply systems. J Phys Conf Ser 2018;977:012007. 链接1

[66] Mateo Domingo C, Gomez San Roman T, Sanchez-Miralles A, Peco Gonzalez JP, Candela MA. A reference network model for large-scale distribution planning with automatic street map generation. IEEE Trans Power Syst 2011;26 (1):190–7. 链接1

[67] Grzanic M, Giacomo Flammini M, Prettico G. Distribution network model platform: a first case study. Energies 2019;12(21):4079. 链接1

[68] Malya PP, Fiorini L, Rouhani M, Aiello M. Electric vehicles as distribution grid batteries: a reality check. Energy Inform 2021;4(Suppl 2):S29. 链接1

相关研究