期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第21卷 第2期 doi: 10.1016/j.eng.2022.07.015

多电子电池新体系关键技术与工程化发展

a Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
b Advanced Technology Research Institute (Jinan), Beijing Institute of Technology, Jinan 250300, China
c Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing 100081, China

发布日期: 2023-02-20

下一篇 上一篇

图片

图1

图2

参考文献

[ 1 ] Gao XP, Yang HX. Multi-electron reaction materials for high energy density batteries. Energy Environ Sci 2010;3(2):174‒89. 链接1

[ 2 ] Chen R, Luo R, Huang Y, Wu F, Li L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv Sci 2016;3(10):1600051. 链接1

[ 3 ] Huang YX, Wu F, Chen RJ. Thermodynamic analysis and kinetic optimization of high-energy batteries based on multi-electron reactions. Natl Sci Rev 2020;7(8):1367‒86. 链接1

[ 4 ] Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 2015;7(1):19‒29. 链接1

[ 5 ] Bruce PG, Freunberger SA, Hardwick LJ, Tarascon JM. Li‒O2 and Li‒S batteries with high energy storage. Nat Mater 2012;11(1):19‒29. 链接1

[ 6 ] Xin S, Chang Z, Zhang X, Guo YG. Progress of rechargeable lithium metal batteries based on conversion reactions. Natl Sci Rev 2017;4(1): 54‒70. 链接1

[ 7 ] Ma Y, Li L, Qian J, Qu W, Luo R, Wu F, et al. Materials and structure engineering by magnetron sputtering for advanced lithium batteries. Energy Storage Mater 2021;39:203‒24. 链接1

[ 8 ] Zhao Y, Amirmaleki M, Sun Q, Zhao C, Codirenzi A, Goncharova LV, et al. Natural SEI-inspired dual-protective layers via atomic/molecular layer deposition for long-life metallic lithium anode. Matter 2019;1(5):1215‒31. 链接1

[ 9 ] Huang J, Liu J, He J, Wu M, Qi S, Wang H, et al. Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with quafunctional heptafluorobutyric anhydride. Angew Chem Int Ed Engl 2021;60(38):20717‒22. 链接1

[10] Xiong P, Zhang F, Zhang X, Wang S, Liu H, Sun B, et al. Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nat Commun 2020;11:3297. 链接1

[11] Kuang Y, Chen C, Kirsch D, Hu L. Thick electrode batteries: principles, opportunities, and challenges. Adv Energy Mater 2019;9(33):1901457. 链接1

[12] Ding F, Xu Wu, Graff GL, Zhang J, Sushko ML, Chen X, et al. Dendrite-free Lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 2013;135(11):4450‒6. 链接1

[13] Zhou T, Zhao Y, El Kazzi M, Choi JW, Coskun A. Stable solid electrolyte interphase formation induced by monoquat-based anchoring in lithium metal batteries. ACS Energy Lett 2021;6(5):1711‒8. 链接1

[14] Xiang J, Yang L, Yuan L, Yuan K, Zhang Y, Huang Y, et al. Alkali-metal anodes: from lab to market. Joule 2019;3(10):2334‒63. 链接1

[15] Qi Y, Li QJ, Wu Y, Bao SJ, Li C, Chen Y, et al. A Fe3N/carbon composite electrocatalyst for effective polysulfides regulation in room-temperature Na‒S batteries. Nat Commun 2021;12(1):6347. 链接1

[16] Gao H, Gallant BM. Advances in the chemistry and applications of alkalimetal‒ gas batteries. Nat Rev Chem 2020;4(11):566‒83. 链接1

相关研究