期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第26卷 第7期 doi: 10.1016/j.eng.2022.10.020

月经周期中免疫球蛋白G N-糖基化的周期性变化

a Genos Glycoscience Research Laboratory, Zagreb 10000, Croatia

b Beijing Fengtai Traditional Chinese Medicine Hospital, Beijing 100076, China

c Beijing Municipal Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing 100054, China

d Centre for Precision Health, Edith Cowan University, Perth, WA 6027, Australia

e School of Basic Medical Sciences, Capital Medical University, Beijing 100054, China

f Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry at University of Zagreb, Zagreb 10000, Croatia

# These authors contributed equally to this work as first authors.

These authors contributed equally to this work as last authors.

收稿日期: 2022-03-25 修回日期: 2022-09-29 录用日期: 2022-10-12 发布日期: 2023-06-15

下一篇 上一篇

摘要

免疫球蛋白G(IgG)是最丰富的血浆糖蛋白,也是重要的体液免疫介质。聚糖组成影响IgG 对配体的亲和力以及随之而来的免疫反应。IgG N-糖基化的修饰被认为是性激素调节免疫系统的各种机制之一。虽然月经周期是大多数育龄妇女中与性激素相关的中枢生理过程,但月经周期中的IgG N-糖基化动力学尚未得到研究。为了填补这一空白,本研究使用亲水相互作用超高效液相色谱(HILIC-UPLC)分析了70 名绝经前健康妇女在月经周期的12 个时间点(每7 天一次,持续3 个月)的血浆IgG N-聚糖。研究观察到IgG N-糖基化的周期性变化与月经周期阶段和血浆中的性激素浓度有关。在综合队列水平上,每种性状的模拟平均月经周期对IgG N-糖基化性状丰度的影响较低,无半乳糖基化N-聚糖的峰值为1.1%。然而,在某些情况下,个体自身变化相对较高;例如,月经周期中唾液酸化N-聚糖的最小值和最大值之间的最大差异高达21%。在所有测量中,月经周期阶段可以解释单半乳糖基化的单个IgG 糖基化性状丰度高达0.72%的变化。相比之下,高达99%的双半乳糖基化丰度变化可归因于IgG N-糖基化的个体差异。总之,月经周期中发生的IgG N-聚糖模式变化的平均程度很小;因此,无论月经周期阶段如何,都可以在大样本量研究中对女性进行IgG N-聚糖谱分析。

图片

Fig. 1

Fig. 2

Fig. 3

参考文献

[ 1 ] Channing CP, Schaerf FW, Anderson LD, Tsafriri A. Ovarian follicular and luteal physiology. Int Rev Physiol 1980;22:117–201. 链接1

[ 2 ] Oertelt-Prigione S. Immunology and the menstrual cycle. Autoimmun Rev 2012;11(6–7):A486–92. 链接1

[ 3 ] Janeway C. Immunobiology 5: the immune system in health and disease. New York City: Garland Pub; 2001. 链接1

[ 4 ] Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, Aebi M, et al. Essentials of glycobiology. 3rd ed. New York City: Cold Spring Harbor Laboratory Press; 2015. 链接1

[ 5 ] Quast I, Peschke B, Lünemann JD. Regulation of antibody effector functions through IgG Fc N-glycosylation. Cell Mol Life Sci 2017;74(5):837–47. 链接1

[ 6 ] Varki A. Biological roles of glycans. Glycobiology 2017;27(1):3–49. 链接1

[ 7 ] Nimmerjahn F, Ravetch JV. Fc-receptors as regulators of immunity. Adv Immunol 2007;96:179–204. 链接1

[ 8 ] Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 2014;343(6176):1260–3. 链接1

[ 9 ] Arnold JN, Dwek RA, Rudd PM, Sim RB. Mannan binding lectin and its interaction with immunoglobulins in health and in disease. Immunol Lett 2006;106(2):103–10. 链接1

[10] Banda NK, Wood AK, Takahashi K, Levitt B, Rudd PM, Royle L, et al. Initiation of the alternative pathway of murine complement by immune complexes is dependent on N-glycans in IgG antibodies. Arthritis Rheum 2008;58 (10):3081–9. 链接1

[11] Karsten CM, Pandey MK, Figge J, Kilchenstein R, Taylor PR, Rosas M, et al. Antiinflammatory activity of IgG1 mediated by Fc galactosylation and association of FccRIIB and dectin-1. Nat Med 2012;18(9):1401–6. 链接1

[12] Peschke B, Keller CW, Weber P, Quast I, Lünemann JD. Fc-galactosylation of human immunoglobulin gamma isotypes improves C1q binding and enhances complement-dependent cytotoxicity. Front Immunol 2017;8:646. 链接1

[13] Freidin MB, Keser T, Gudelj I, Štambuk J, Vucˇenovic´ D, Allegri M, et al. The association between low back pain and composition of IgG glycome. Sci Rep 2016;6(1):26815. 链接1

[14] Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, et al. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human FccRIII and antibody-dependent cellular toxicity. J Biol Chem 2002;277(30):26733–40. 链接1

[15] Masuda K, Kubota T, Kaneko E, Iida S, Wakitani M, Kobayashi-Natsume Y, et al. Enhanced binding affinity for FccRIIIa of fucose-negative antibody is sufficient to induce maximal antibody-dependent cellular cytotoxicity. Mol Immunol 2007;44(12):3122–31. 链接1

[16] Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science 2006;313 (5787):670–3. 链接1

[17] Anthony RM, Wermeling F, Karlsson MCI, Ravetch JV. Identification of a receptor required for the anti-inflammatory activity of IVIG. Proc Natl Acad Sci USA 2008;105(50):19571–8. 链接1

[18] Parekh R, Roitt I, Isenberg D, Dwek R, Rademacher T. Age-related galactosylation of the N-linked oligosaccharides of human serum IgG. J Exp Med 1988;167(5):1731–6. 链接1

[19] Bakovic´ MP, Selman MHJ, Hoffmann M, Rudan I, Campbell H, Deelder AM, et al. High-throughput IgG Fc N-glycosylation profiling by mass spectrometry of glycopeptides. J Proteome Res 2013;12(2):821–31. 链接1

[20] Krištic´ J, Vucˇkovic´ F, Menni C, Klaric´ L, Keser T, Beceheli I, et al. Glycans are a novel biomarker of chronological and biological ages. J Gerontol A Biol Sci Med Sci 2014;69(7):779–89. 链接1

[21] Yu X, Wang Y, Kristic J, Dong J, Chu X, Ge S, et al. Profiling IgG N-glycans as potential biomarker of chronological and biological ages: a community-based study in a Han Chinese population. Medicine 2016;95(28):e4112. 链接1

[22] Chen G, Wang Y, Qiu L, Qin X, Liu H, Wang X, et al. Human IgG Fc-glycosylation profiling reveals associations with age, sex, female sex hormones and thyroid cancer. J Proteomics 2012;75(10):2824–34. 链接1

[23] Hughes GC, Choubey D. Modulation of autoimmune rheumatic diseases by oestrogen and progesterone. Nat Rev Rheumatol 2014;10(12):740–51. 链接1

[24] Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol 2018;333:65–79. 链接1

[25] Bondt A, Selman MHJ, Deelder AM, Hazes JMW, Willemsen SP, Wuhrer M, et al. Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation. J Proteome Res 2013;12(10):4522–31. 链接1

[26] Selman MHJ, Derks RJE, Bondt A, Palmblad M, Schoenmaker B, Koeleman CAM, et al. Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. J Proteomics 2012;75 (4):1318–29. 链接1

[27] van de Geijn FE, Wuhrer M, Selman MH, Willemsen SP, de Man YA, Deelder AM, et al. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res Ther 2009;11(6):R193. 链接1

[28] Cincinelli G, Generali E, Dudam R, Ravindran V, Selmi C. Why women or why not men? Sex and autoimmune diseases. Indian J Rheumatol 2018;13(1):44. 链接1

[29] Ngo ST, Steyn FJ, McCombe PA. Gender differences in autoimmune disease. Front Neuroendocrinol 2014;35(3):347–69. 链接1

[30] Whitacre CC. Sex differences in autoimmune disease. Nat Immunol 2001;2 (9):777–80. 链接1

[31] Whitacre CC, Reingold SC, O’Looney PA, Blankenhorn E, Brinley F, Collier E, et al. A gender gap in autoimmunity. Science 1999;283(5406):1277–8. 链接1

[32] Engdahl C, Bondt A, Harre U, Raufer J, Pfeifle R, Camponeschi A, et al. Estrogen induces St6gal1 expression and increases IgG sialylation in mice and patients with rheumatoid arthritis: a potential explanation for the increased risk of rheumatoid arthritis in postmenopausal women. Arthritis Res Ther 2018;20 (1):84. 链接1

[33] Huang C, Liu Y, Wu H, Sun D, Li Y. Characterization of IgG glycosylation in rheumatoid arthritis patients by MALDI-TOF-MSn and capillary electrophoresis. Anal Bioanal Chem 2017;409(15):3731–9. 链接1

[34] Ercan A, Kohrt WM, Cui J, Deane KD, Pezer M, Yu EW, et al. Estrogens regulate glycosylation of IgG in women and men. JCI Insight 2017;2(4):e89703. 链接1

[35] Juric´ J, Kohrt WM, Kifer D, Gavin KM, Pezer M, Nigrovic PA, et al. Effects of estradiol on biological age measured using the Glycan Age Index [Internet]. Albany: Aging; 2020 Oct 13 [cited 2020 Oct 27]. Available from: https://www. aging-us.com/article/104060. 链接1

[36] Štambuk T, Klasic´ M, Zoldoš V, Lauc G. N-glycans as functional effectors of genetic and epigenetic disease risk. Mol Aspects Med 2020;79:100891. 链接1

[37] Liu D, Li Q, Zhang X, Wang H, Cao W, Li D, et al. Systematic review: immunoglobulin G N-glycans as next-generation diagnostic biomarkers for common chronic diseases. OMICS 2019;23(12):607–14. 链接1

[38] Russell A, Adua E, Ugrina I, Laws S, Wang W. Unravelling immunoglobulin G Fc N-glycosylation: a dynamic marker potentiating predictive, preventive and personalised medicine. Int J Mol Sci 2018;19(2):E390. 链接1

[39] Kavur M, Lauc G, Pezer M. Systems glycobiology: immunoglobulin G glycans as biomarkers and functional effectors in aging and diseases. In: Barchi Jr JJ, editor. Comprehensive glycoscience. Amsterdam: Elsevier B.V.; 2021. p. 439–78. 链接1

[40] Pucic´ M, Knezevic´ A, Vidicˇ J, Adamczyk B, Novokmet M, Polašek O, et al. High throughput isolation and glycosylation analysis of IgG-variability and heritability of the IgG glycome in three isolated human populations. Mol Cell Proteomics 2011;10(10):010090. 链接1

[41] Agakova A, Vucˇkovic´ F, Klaric´ L, Lauc G, Agakov F. Automated integration of a UPLC glycomic profile. Methods Mol Biol 2017;1503:217–33. 链接1

[42] Ceroni A, Maass K, Geyer H, Geyer R, Dell A, Haslam SM. GlycoWorkbench: a tool for the computer-assisted annotation of mass spectra of glycans. J Proteome Res 2008;7(4):1650–9. 链接1

[43] Mihm M, Gangooly S, Muttukrishna S. The normal menstrual cycle in women. Anim Reprod Sci 2011;124(3–4):229–36. 链接1

[44] Reed BG, Carr BR. The normal menstrual cycle and the control of ovulation. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext [Internet]. South Dartmouth: MDText.com, Inc.; 2000 [cited 2020 Oct 27]. Available from: https://www.ncbi.nlm.nih.gov/books/ NBK279054/. 链接1

[45] Stelzer IA, Arck PC. Immunity and the endocrine system. In: Ratcliffe MJH, editor. Encyclopedia of immunobiology. Oxford: Academic Press; 2016. p. 73–85. 链接1

[46] Khan D, Ansar AS. The immune system is a natural target for estrogen action: opposing effects of estrogen in two prototypical autoimmune diseases. Front Immunol 2016;6:635. 链接1

[47] Hughes GC. Progesterone and autoimmune disease. Autoimmun Rev 2012;11 (6–7):A502–14. 链接1

[48] Alvergne A, Högqvist TV. Is female health cyclical? Evolutionary perspectives on menstruation. Trends Ecol Evol 2018;33(6):399–414. 链接1

[49] Irvine EB, Alter G. Understanding the role of antibody glycosylation through the lens of severe viral and bacterial diseases. Glycobiology 2020;30 (4):241–53. 链接1

[50] Canellada A, Blois S, Gentile T, Margni Idehu RA. In vitro modulation of protective antibody responses by estrogen, progesterone and interleukin-6. Am J Reprod Immunol 2002;48(5):334–43. 链接1

[51] Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol 2017;17(8):469–82. 链接1

[52] Štambuk J, Nakic´ N, Vucˇkovic´ F, Pucˇic´ -Bakovic´ M, Razdorov G, Trbojevic´ - Akmacˇic´ I, et al. Global variability of the human IgG glycome. Aging 2020;12 (15):15222–59. 链接1

[53] Gornik O, Pavic´ T, Lauc G. Alternative glycosylation modulates function of IgG and other proteins—implications on evolution and disease. Biochim Biophys Acta 2012;1820(9):1318–26. 链接1

[54] Huhn C, Selman MHJ, Ruhaak LR, Deelder AM, Wuhrer M. IgG glycosylation analysis. Proteomics 2009;9(4):882–913. 链接1

[55] Martin TC, Šimurina M, Za˛bczyn´ ska M, Kavur MM, Rydlewska M, Pezer M, et al. Decreased IgG core fucosylation, a player in antibody-dependent cellmediated cytotoxicity, is associated with autoimmune thyroid diseases. Mol Cell Proteomics 2020;19(5):774–92. 链接1

[56] Vucˇkovic´ F, Theodoratou E, Thaçi K, Timofeeva M, Vojta A, Štambuk J, et al. IgG glycome in colorectal cancer. Clin Cancer Res 2016;22(12):3078–86. 链接1

[57] Ahmad N, Pollard TM, Unwin N. The optimal timing of blood collection during the menstrual cycle for the assessment of endogenous sex hormones: can interindividual differences in levels over the whole cycle be assessed on a single day? Cancer Epidemiol Biomarkers Prev 2002;11 (1):147–51. 链接1

[58] Lauc G. Precision medicine that transcends genomics: glycans as integrators of genes and environment. Biochim Biophys Acta 2016;1860(8):1571–3. 链接1

[59] Irani V, Guy AJ, Andrew D, Beeson JG, Ramsland PA, Richards JS. Molecular properties of human IgG subclasses and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol Immunol 2015;67(2 Pt A):171–82. 链接1

[60] Wuhrer M, Selman MHJ, McDonnell LA, Kümpfel T, Derfuss T, Khademi M, et al. Pro-inflammatory pattern of IgG1 Fc glycosylation in multiple sclerosis cerebrospinal fluid. J Neuroinflammation 2015;12(1):235. 链接1

[61] Jones MB, Oswald DM, Joshi S, Whiteheart SW, Orlando R, Cobb BA. B-cellindependent sialylation of IgG. Proc Natl Acad Sci USA 2016;113(26):7207–12. 链接1

[62] Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014;5:520. 链接1

[63] Hassinen A, Pujol FM, Kokkonen N, Pieters C, Kihlström M, Korhonen K, et al. Functional organization of Golgi N- and O-glycosylation pathways involves pH-dependent complex formation that is impaired in cancer cells. J Biol Chem 2011;286(44):38329–40. 链接1

[64] Khoder-Agha F, Harrus D, Brysbaert G, Lensink MF, Harduin-Lepers A, Glumoff T, et al. Assembly of B4GALT1/ST6GAL1 heteromers in the Golgi membranes involves lateral interactions via highly charged surface domains. J Biol Chem 2019;294(39):14383–93. 链接1

[65] Cunningham M, Gilkeson G. Estrogen receptors in immunity and autoimmunity. Clin Rev Allergy Immunol 2011;40(1):66–73. 链接1

[66] Klaric´ L, Tsepilov YA, Stanton CM, Mangino M, Sikka TT, Esko T, et al. Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases. Sci Adv 2020;6(8):eaax0301. 链接1

[67] Mijakovac A, Juric´ J, Kohrt WM, Krištic´ J, Kifer D, Gavin KM, et al. Effects of estradiol on immunoglobulin G glycosylation: mapping of the downstream signaling mechanism. Front Immunol 2021;12:680227. 链接1

[68] Medvedová L, Farkas R. Hormonal control of protein glycosylation: role of steroids and related lipophilic ligands. Endocr Regul 2004;38(2): 65–79. 链接1

[69] Prados MB, La Blunda J, Szekeres-Bartho J, Caramelo J, Miranda S. Progesterone induces a switch in oligosaccharyltransferase isoform expression: consequences on IgG N-glycosylation. Immunol Lett 2011;137(1–2):28–37. 链接1

[70] Munkley J, Vodak D, Livermore KE, James K, Wilson BT, Knight B, et al. Glycosylation is an androgen-regulated process essential for prostate cancer cell viability. EBioMedicine 2016;8:103–16. 链接1

[71] Tsai MJ, O’Malley BW. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem 1994;63(1):451–86. 链接1

[72] Gubbels Bupp MR, Jorgensen TN. Androgen-induced immunosuppression. Front Immunol 2018;9:794. 链接1

[73] Wilhelmson AS, Lantero Rodriguez M, Stubelius A, Fogelstrand P, Johansson I, Buechler MB, et al. Testosterone is an endogenous regulator of BAFF and splenic B cell number. Nat Commun 2018;9(1):2067. 链接1

[74] Çakırog˘lu Y, Vural F, Vural B. The inflammatory markers in polycystic ovary syndrome: association with obesity and IVF outcomes. J Endocrinol Invest 2016;39(8):899–907. 链接1

[75] Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, sex hormones, and immunity. Front Immunol 2018;9:1332. 链接1

[76] Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev 2004;25(6):947–70. 链接1

[77] Hall OJ, Klein SL. Progesterone-based compounds affect immune responses and susceptibility to infections at diverse mucosal sites. Mucosal Immunol 2017;10(5):1097–107. 链接1

[78] Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-related immune modulation of pregnancy and labor. Front Endocrinol 2019;10:198. 链接1

[79] Kyurkchiev D, Ivanova-Todorova E, Murdjeva M, Kyurkchiev S. Immunoregulation by progesterone: effects on immune cells and mesenchymal stem cells. Adv Neuroimmune Biol 2011;1(2):105–23. 链接1

[80] Kelemen K, Bognar I, Paal M, Szekeres-Bartho J. A progesterone-induced protein increases the synthesis of asymmetric antibodies. Cell Immunol 1996;167(1):129–34. 链接1

[81] Tan H, Yi L, Rote NS, Hurd WW, Mesiano S. Progesterone receptor-A and -B have opposite effects on proinflammatory gene expression in human myometrial cells: implications for progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab 2012;97(5):E719–30. 链接1

[82] Cummings RD, Pierce JM. The challenge and promise of glycomics. Chem Biol 2014;21(1):1–15. 链接1

[83] Kikuchi N, Narimatsu H. Bioinformatics for comprehensive finding and analysis of glycosyltransferases. Biochim Biophys Acta 2006;1760(4):578–83. 链接1

[84] Narimatsu H. Human glycogene cloning: focus on b3-glycosyltransferase and b4-glycosyltransferase families. Curr Opin Struct Biol 2006;16(5):567–75. 链接1

[85] Coser KR, Chesnes J, Hur J, Ray S, Isselbacher KJ, Shioda T. Global analysis of ligand sensitivity of estrogen inducible and suppressible genes in MCF7/BUS breast cancer cells by DNA microarray. Proc Natl Acad Sci USA 2003;100 (24):13994–9. 链接1

[86] Hah N, Danko CG, Core L, Waterfall JJ, Siepel A, Lis JT, et al. A rapid, extensive, and transient transcriptional response to estrogen signaling in breast cancer cells. Cell 2011;145(4):622–34. 链接1

[87] Munkley J. Glycosylation is a global target for androgen control in prostate cancer cells. Endocr Relat Cancer 2017;24(3):R49–64. 链接1

[88] Wang W. Glycomedicine: the current state of the art. Engineering. In press.

相关研究