期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2023年 第30卷 第11期 doi: 10.1016/j.eng.2023.04.005

用于超快电子器件的全通型波导

Poly-Grames Research Center, Department of Electrical Engineering, Polytechnique Montreal, University of Montreal, Montreal, QC H3T 1J4, Canada

收稿日期: 2022-08-04 修回日期: 2023-01-31 录用日期: 2023-04-09 发布日期: 2023-05-06

下一篇 上一篇

摘要

Ultrashort pulse transmission has been recognized as a primary problem that fundamentally hinders the development of ultrafast electronics beyond the current nanosecond timescale. This requires a transmission line or waveguide that exhibits an all-pass frequency behavior for the transmitted ultrashort pulse signals. However, this type of waveguiding structure has not yet been practically developed; groundbreaking innovations and advances in signal transmission technology are urgently required to address this scenario. Herein, we present a synthesized all-pass waveguide that demonstrates record guided-wave controlling capabilities, including eigenmode reshaping, polarization rotation, loss reduction, and dispersion improvement. We experimentally developed two waveguides for use in ultrabroad frequency ranges (direct current (DC)-to-millimeter-wave and DC-to-terahertz). Our results suggest that the waveguides can efficiently transmit picosecond electrical pulses while maintaining signal integrity. This waveguide technology is an important breakthrough in the evolution of ultrafast electronics, providing a path towards frequency-engineered ultrashort pulses for low-loss and low-dispersion transmissions.

补充材料

相关研究