期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《工程(英文)》 >> 2015年 第1卷 第3期 doi: 10.15302/J-ENG-2015032

用于制造高效低成本太阳能电池的单晶种铸造大型单晶硅

1 Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
2 National Institute for Materials Science, Tsukuba, Ibaraki 305-0044 Japan

收稿日期: 2015-06-18 修回日期: 2015-07-01 录用日期: 2015-09-10 发布日期: 2015-09-30

下一篇 上一篇

摘要

为了能以低成本生产优质大型单晶硅,笔者提出了单晶种铸造技术。这项技术的实施,必须解决两个问题,即坩埚壁上的多晶成核问题和晶体内的位错增殖问题。在本文中,笔者尝试通过数值分析法来解决这两个问题。根据数值分析得出的优化熔炉结构和工况进行了实验,在实验中采用单晶种铸造技术来生长单晶硅。实验结果表明,该技术远优于常用的高性能多晶和准单晶铸造技术。

图片

图1

图2

图3

图4

图5

图6

图7

图8

图9

图10

参考文献

[ 1 ] Fraunhofer Institute for Solar Energy Systems ISE. Photovoltaic report. Freiburg: Fraunhofer ISE, 2014: 3–4

[ 2 ] N. Stoddard, Casting single crystal silicon: Novel defect profiles from BP Solar’s Mono2 TM wafers. Solid State Phenom., 2007, 131−133: 1–8

[ 3 ] N. Stoddard, B. Wu, L. Maisano, R. Russell, R. Clark, J. M. Fernandez. The leading edge of silicon casting technology and BP Solar’s Mono2 wafers. In: B. L. Sopori, , eds. Proceedings of the 18th Workshop on Crystalline Silicon Solar Cells and Modules: Materials and Processes. Colorado: National Renewable Energy Laboratory, 2008: 7–14

[ 4 ] N. Stoddard, Evaluating BP Solar’s Mono2 TM materials: Lifetime and cell electrical data. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference. Philadelphia: IEEE, 2009: 1163–1168

[ 5 ] D. Zhu, L. Ming, M. Huang, Z. Zhang, X. Huang. Seed-assisted growth of high-quality multi-crystalline silicon in directional solidification. J. Cryst. Growth, 2014, 386: 52–56 链接1

[ 6 ] X. Gu, X. Yu, K. Guo, L. Chen, D. Wang, D. Yang. Seed-assisted cast quasi-single crystalline silicon for photovoltaic application: Towards high efficiency and low cost silicon solar cells. Sol. Energ. Mat. Sol. C., 2012, 101: 95–101 链接1

[ 7 ] K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Control of grain boundary propagation in mono-like Si: Utilization of functional grain boundaries. Appl. Phys. Express, 2013, 6(2): 025505 链接1

[ 8 ] K. Kutsukake, N. Usami, Y. Ohno, Y. Tokumoto, I. Yonenaga. Mono-like silicon growth using functional grain boundaries to limit area of multicrystalline grains. J. Photovolt., 2014, 4(1): 84–87 链接1

[ 9 ] M. G. Tsoutsouva, Segregation, precipitation and dislocation generation between seeds in directionally solidified mono-like silicon for photovoltaic applications. J. Cryst. Growth, 2014, 401: 397–403 链接1

[10] G. Stokkan, Y. Hu, Ø. Mjøs, M. Juel. Study of evolution of dislocation clusters in high performance multicrystalline silicon. Sol. Energ. Mat. Sol. C., 2014, 130: 679–685

[11] Y. M. Yang, A. Yu, B. Hsu, W. C. Hsu, A. Yang, C. W. Lan. Development of high-performance multicrystalline silicon for photovoltaic industry. Prog. Photovolt. Res. Appl., 2015, 23(3): 340–351 链接1

[12] B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto. Dislocation analysis of a new method for growing large-size crystals of monocrystalline silicon using a seed casting technique. Cryst. Growth Des., 2012, 12(12): 6144–6150 链接1

[13] B. Gao, S. Nakano, H. Harada, Y. Miyamura, T. Sekiguchi, K. Kakimoto. Reduction of polycrystalline grains region near the crucible wall during seeded growth of monocrystalline silicon in a unidirectional solidification furnace. J. Cryst. Growth, 2012, 352(1): 47–52 链接1

[14] V. R. Voller, M. Cross, N. C. Markatos. An enthalpy method for convection/diffusion phase change. Int. J. Numer. Methods Eng., 1987, 24(1): 271–284

[15] J. P. Garandet. On the thermal stresses in vertical gradient freeze furnaces. J. Cryst. Growth, 1989, 96(3): 680–684 链接1

[16] Y. Miyamura, Crystal growth of 50 cm square mono-like Si by directional solidification and its characterization. J. Cryst. Growth, 2014, 401: 133–136 链接1

[17] B. Gao, S. Nakano, K. Kakimoto. Effect of crucible cover material on impurities of multicrystalline silicon in a unidirectional solidification furnace. J. Cryst. Growth, 2011, 318(1): 255–258 链接1

相关研究