期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2020年 第22卷 第3期 doi: 10.15302/J-SSCAE-2020.03.006

我国自由电子激光技术发展战略研究

中国工程物理研究院应用电子学研究所,四川绵阳 621900

资助项目 :中国工程院咨询项目“我国激光技术与应用 2035 发展战略研究” (2018-XZ-27) 收稿日期: 2020-03-30 修回日期: 2020-05-02 发布日期: 2020-05-27

下一篇 上一篇

摘要

自由电子激光(FEL)光源是一种基于电子直线加速器的大型科研装置,广泛应用于凝聚态物理、先进材料与表面物理、原子分子物理、化学、生物等基础科学研究。FEL 技术的进步将促使光源向更高功率和更短波长发展,以满足日益增长的用户需求。本文从FEL 的技术特点出发,论述了技术发展的必要性,研判了现阶段国内外FEL 技术发展现状并凝练我国领域发展面临的问题。研究提出了我国FEL 技术的发展思路,在2035 年前着力在长波波段FEL、X 射线FEL、新型FEL、基于FEL 的极紫外(EUV)光刻光源等方面取得突破。研究建议:制定科学发展战略、保障科研攻关实施,加强基础投入、提高自主创新水平,加强多方合作、促进科技成果转化,促进研究与应用结合、推动市场应用,加强科技人才培养,以此推进我国FEL 领域的稳健发展。

图片

图 1

参考文献

[ 1 ] 金光齐, 黄志戎, 瑞安·林德伯格. 同步辐射与自由电子激 光——相干X射线产生原理 [M]. 北京: 北京大学出版社, 2018. Kim K J, Huang Z R, Lindberg R. Synchrotron radiation and free-electron lasers: Principles of coherent X-ray generation [M]. Beijing: Peking University Press, 2018.
Kim K J, Huang Z R, Lindberg R. Synchrotron radiation and free-electron lasers: Principles of coherent X-ray generation [M]. Beijing: Peking University Press, 2018. Chinese.

[ 2 ] Madey J M. Stimulated emission of bremsstrahlung in a periodic magnetic field [J]. Journal of Applied Physics, 1971, 42: 1906– 1971. 链接1

[ 3 ] Green B, Kovalev S, Asgekar V, et al. High-field high-repetition rate sources for the coherent THz control of matter [J]. Scientific Reports, 2016, 6: 1–9. 链接1

[ 4 ] Feng C, Deng H X. Review of fully coherent free-electron lasers [J]. Nuclear Science and Techniques, 2018, 29(11): 1–23. 链接1

[ 5 ] Yabashi M, Tanaka H. The next ten years of X-ray science [J]. Nature Photon, 2017, 11(1): 12–14. 链接1

[ 6 ] 赵振堂, 冯超. X射线自由电子激光 [J]. 物理, 2018, 47(8): 481– 490. Zhao Z T, Feng C. X-ray free electron lasers [J]. Physics, 2018, 47(8): 481–490.
Zhao Z T, Feng C. X-ray free electron lasers [J]. Physics, 2018, 47(8): 481–490. Chinese. 链接1

[ 7 ] Carr G L, Martin M C, McKinney W R, et al. High-power terahertz radiation from relativistic electrons [J]. Nature, 2002, 420(6912): 153–156. 链接1

[ 8 ] Vinokurov N, Arbuzov V S, Chernov K N , et al. Novosibirsk high-power THz FEL facility [C]. Saint Petersburg: 2016 International Conference Laser Optics, 2016. 链接1

[ 9 ] Bostedt C, Boutet S, Fritz D M, et al. Linac coherent light source: The first five years [J]. Reviews of Modern Physics, 2016, 88(1): 1–10. 链接1

[10] Weise H, Decking W. Commissioning and first lasing of the European XFEL [C]. Santa Fe: 38th International Free Electron Laser Conference, 2017. 链接1

[11] Milne C, Schietinger T, Aiba M, et al. SwissFEL: The Swiss X-ray free electron laser [J]. Applied Sciences, 2017, 7(7): 720. 链接1

[12] Ishikawa T, Aoyagi H, Asaka T, et al. A compact X-ray freeelectron laser emitting in the sub-ngstrm region [J]. Nature Photonics, 2012, 6(8):540–544. 链接1

[13] Kang H S, Min C K, Heo H, et al. Hard X-ray free-electron laser with femtosecond-scale timing jitter [J]. Nature Photonics, 2017, 11(11): 708–714. 链接1

[14] Zhao Z Y, Li H T, Jia Q K. Effect of cavity length detuning on the output characteristics for the middle infrared FEL oscillator of FELiChEM [J]. Chinese Physics C, 2017, 41(10): 1–6. 链接1

[15] Jin X, Li M, Xu Z. Experiment study on the CAEP FIR-FEL [J]. Chinese Physics C, 2006, 30(1): 96–98.

[16] 黎明, 杨兴繁, 许州, 等. 太赫兹自由电子激光的受饱和实验 [J]. 物理学报, 2018, 67(8): 1–9. Li M, Yang X F , Xu Z, et al. Experimental study on the stimulated saturation of terahertz free electron laser [J]. Acta Physica Sinica, 2018, 67(8): 1–9.
Li M, Yang X F , Xu Z, et al. Experimental study on the stimulated saturation of terahertz free electron laser [J]. Acta Physica Sinica, 2018, 67(8): 1–9. Chinese. 链接1

[17] Zhao Z T, Wang D, Chen J H, et al. First lasing of an echo-enabled harmonic generation free-electron laser [J]. Nature Photonics, 2012, 6(6): 360–363. 链接1

[18] Wang H L, Yu Y, Chang Y, et al. Photodissociation dynamics of H2O at 111.5 nm by a vacuum ultraviolet free electron laser [J]. The Journal of Chemical Physics, 2018, 148(12): 1–15. 链接1

[19] Zhao Z T, Wang D, Gu Q, et al. Status of the SXFEL project [J]. AAPPS Bulletin, 2016, 26(1): 12–24.

[20] Zhu Z Y, Zhao Z, Wang D, et al. SCLF: An 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai [C]. Santa Fe: Proceedings of the 38th International Free-Electron Laser Conference, 2017. 链接1

[21] 刘国治. 关于生物神经系统物理机理的若干猜想 [J]. 科学通报, 2018, 63(36): 16–17. Liu G Z. The conjectures on physical mechanism of vertebrate nervous system [J]. Chinese Science Bulletin, 2018, 63(36): 16– 17.
Liu G Z. The conjectures on physical mechanism of vertebrate nervous system [J]. Chinese Science Bulletin, 2018, 63(36): 16– 17. Chinese. 链接1

[22] Bonifacio R, Fares H, Ferrario M, et al. Design of a sub-angstrom compact free-electron laser source [J]. Optics Communications, 2017, 382(1): 58–63. 链接1

[23] Kawata H. Challenges to realize the EUV-FEL high power light source — Present status on the EUV-FEL R&D activities [C]. Berkeley: 2017 International Workshop on EUV Lithography, 2017. 链接1

相关研究