期刊首页 优先出版 当期阅读 过刊浏览 作者中心 关于期刊 English

《中国工程科学》 >> 2021年 第23卷 第5期 doi: 10.15302/J-SSCAE-2021.05.014

煤 – 焦 – 氢 – 铁产业链发展关键技术与战略思考

1. 省部共建煤基能源清洁高效利用国家重点实验室,太原 030024;

2. 太原理工大学环境科学与工程学院,太原 030024;

3. 太原理工大学机械与运载工程学院,太原 030024
 

资助项目 :中国工程院院地合作咨询项目“山西省煤焦氢铁产业链发展战略研究” (2019SX7) 收稿日期: 2021-05-21 修回日期: 2021-07-09 发布日期: 2021-10-20

下一篇 上一篇

摘要

煤炭、焦化、钢铁等能源资源消耗型产业,是经济社会发展的重要基础,但也伴生高能耗和环境污染问题;随着碳达峰、碳中和目标的提出,统筹考虑资源禀赋、环境容量、产业基础等因素,构建绿色低碳且安全高效的煤炭、焦化、氢能、钢铁产业新体系,是加快推进我国能源生产与消费革命的重要举措。本文旨在梳理煤基制氢技术的发展现状,结合我国能源资源禀赋,焦化、钢铁、氢能产业现实要素基础,提出煤– 焦– 氢– 铁(气基直接还原铁)产业链发展的新思路。从经济性、能耗水平、碳排放等方面着手,对煤– 焦– 氢– 铁产业链中的5 种技术路径进行对比与评价,进而分析研判制氢技术耦合直接还原铁路径的发展潜力与战略选择;以山西省作为案例,具体阐述了煤– 焦– 氢– 铁产业链技术的发展目标与产业布局。研究建议,树立清洁低碳发展理念,依托煤– 焦– 氢– 铁产业链推进能源转型发展,制定煤– 焦– 氢– 铁产业集群整体发展规划,协同推进相关产业链的政策、科技、人才、市场融合。

图片

图 1

图 2

图 3

图 4

图 5

图 6

图 7

参考文献

[ 1 ] 张利娜, 李辉, 程琳, 等. 国外钢铁行业低碳技术发展概况 [J]. 冶 金经济与管理, 2018 (5): 30–33. Zhang L N, Li H, Cheng L, et al. A review on low carbon technology development of in steel industry foreign [J]. Metallurgical Economics and Management, 2018 (5): 30–33.
Zhang L N, Li H, Cheng L, et al. A review on low carbon technology development of in steel industry foreign [J]. Metallurgical Economics and Management, 2018 (5): 30–33. Chinese. 链接1

[ 2 ] Fan Z Y, Friedmann S J. Low-carbon production of iron and steel: Technology options, economic assessment, and policy [J]. Joule, 2021, 5(4): 829–862. 链接1

[ 3 ] 施永杰. 我国钢铁行业的大气污染及整治措施 [J]. 工程技术研 究, 2020, 5(16): 245–246. Shi Y J. Air pollution and remediation measures in China’s steel industry [J]. Metallurgical Collections, 2020, 5(16): 245–246.
Shi Y J. Air pollution and remediation measures in China’s steel industry [J]. Metallurgical Collections, 2020, 5(16): 245–246. Chinese. 链接1

[ 4 ] 2019年钢铁行业运行状况分析报告 [J]. 企业决策参考, 2020 (3): 1–10. Steel industry operating conditions analysis report 2019 [J]. Business Decision Reference, 2020 (3): 1–10.
Steel industry operating conditions analysis report 2019 [J]. Business Decision Reference, 2020 (3): 1–10. Chinese.

[ 5 ] World Steel Association. Steel statistical yearbook 2020 concise version [R]. Brussels: World Steel Association, 2021.

[ 6 ] 张华. 高炉炼铁和非高炉炼铁能耗比较 [J]. 科技创业家, 2014 (6): 142. Zhang H. Comparison of energy consumption between blast furnace and non-blast furnace ironmaking [J]. Technological Pioneers, 2014 (6): 142.
Zhang H. Comparison of energy consumption between blast furnace and non-blast furnace ironmaking [J]. Technological Pioneers, 2014 (6): 142. Chinese. 链接1

[ 7 ] 张建国. 直接还原铁工艺技术的对比分析论述 [J]. 资源再生, 2018 (2): 57–61. Zhang J G. Comparison and analysis of direct reduction of iron technology [J]. Resource Recycling, 2018 (2): 57–61.
Zhang J G. Comparison and analysis of direct reduction of iron technology [J]. Resource Recycling, 2018 (2): 57–61. Chinese. 链接1

[ 8 ] Baig S. Cost effectiveness analysis of HYL and Midrex DRI technologies for the iron and steel-making industry [D]. Durham: Duke University(Master’s thesis), 2016. 链接1

[ 9 ] 胡俊鸽, 周文涛, 郭艳玲, 等. 先进非高炉炼铁工艺技术经济分 析 [J]. 鞍钢技术, 2012 (3): 7–13. Hu J G, Zhou W T, Guo Y L, et al. Economic analysis on advanced ironmaking processes by non-blast furnace [J]. Angang Technology, 2012 (3): 7–13.
Hu J G, Zhou W T, Guo Y L, et al. Economic analysis on advanced ironmaking processes by non-blast furnace [J]. Angang Technology, 2012 (3): 7–13. Chinese. 链接1

[10] 周渝生, 钱晖, 齐渊洪, 等. 煤制气生产直接还原铁的联合工艺 方案 [J]. 钢铁, 2012, 47(11): 27–31. Zhou Y S, Qian H, Qi Y H, et al. Scheme of direct reduction iron production combined with coal gasification [J]. Iron & Steel, 2012, 47(11): 27–31.
Zhou Y S, Qian H, Qi Y H, et al. Scheme of direct reduction iron production combined with coal gasification [J]. Iron & Steel, 2012, 47(11): 27–31. Chinese. 链接1

[11] Parisi D R, Laborde M A. Modeling of counter current moving bed gas-solid reactor used in direct reduction of iron ore [J]. Chemical Engineering Journal, 2004, 104(1–3): 35–43. 链接1

[12] 李健. 煤制气–气基竖炉联合工艺生产直接还原铁的技术经济 性分析 [J]. 中国废钢铁, 2017 (1): 38–43. Li J. Techno-economic analysis of the combined coal-to-gas-gasbased shaft furnace process for the production of direct reduced iron [J]. Iron & Steel Scrap of China, 2017 (1): 38–43.
Li J. Techno-economic analysis of the combined coal-to-gas-gas based shaft furnace process for the production of direct reduced iron [J]. Iron & Steel Scrap of China, 2017 (1): 38–43. Chinese.

[13] 雷秋晓, 史义存, 苏子义, 等. 制氢技术的现状及发展前景 [J]. 山 东化工, 2020, 49(8): 72–75. Lei Q X, Shi Y C, Su Z Y, et al. Status and development prospect of hydrogen production technology [J]. Shandong Chemical Industry, 2020, 49(8): 72–75.
Lei Q X, Shi Y C, Su Z Y, et al. Status and development prospect of hydrogen production technology [J]. Shandong Chemical Industry, 2020, 49(8): 72–75. Chinese. 链接1

[14] 王亚阁, 王丽霞. 焦炉煤气制氢工艺现状 [J]. 化工设计通讯, 2020, 46(8): 86. Wang Y G, Wang L X. Present situation of hydrogen production process from coke oven gas [J]. Chemical Engineering Design Communications, 2020, 46(8): 86.
Wang Y G, Wang L X. Present situation of hydrogen production process from coke oven gas [J]. Chemical Engineering Design Communications, 2020, 46(8): 86. Chinese. 链接1

[15] 张俊苓. 煤系中非常规天然气特征及综合研究分析 [J]. 冶金管 理, 2020 (19): 89–90. Zhang J L. Characterization of unconventional natural gas in coal system and comprehensive research analysis [J]. Metallurgical Industry Management, 2020 (19): 89–90.
Zhang J L. Characterization of unconventional natural gas in coal system and comprehensive research analysis [J]. Metallurgical Industry Management, 2020 (19): 89–90. Chinese. 链接1

[16] Kosinov N, Hensen E J M. Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization [J]. Advanced Materials, 2020, 32(44): 1–12. 链接1

[17] Cetinkaya E, Dincer I, Naterer G F. Life cycle assessment of various hydrogen production methods [J]. International Journal of Hydrogen Energy, 2012, 37(3): 2071–2080. 链接1

[18] Li J J, Cheng W J. Comparative life cycle energy consumption, carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification [J]. International Journal of Hydrogen Energy, 2020, 45(51): 27979–27993. 链接1

[19] Bhandari R, Trudewind C A, Zapp P. Life cycle assessment of hydrogen production via electrolysis: A review [J]. Journal of Cleaner Production, 2014, 85(15): 151–163. 链接1

[20] Li F, Chu M S, Tang J, et al. Life-cycle assessment of the coal gasification-shaft furnace-electric furnace steel production process [J]. Journal of Cleaner Production, 2021, 287: 1–12.
Li F, Chu M S, Tang J, et al. Life-cycle assessment of the coal gasfification-shaft furnace-electric furnace steel production process [J]. Journal of Cleaner Production, 2021, 287: 1–12. 链接1

[21] Burchart-Korol D. Life cycle assessment of steel production in Poland: A case study [J]. Journal of Cleaner Production, 2013, 54: 235–243. 链接1

[22] Chen S Y, Fu X J, Chu M S, et al. Life cycle assessment of the comprehensive utilization of vanadium titano-magnetite [J]. Journal of Cleaner Production, 2015, 101: 122–128. 链接1

[23] He H C, Guan H J, Zhu X, et al. Assessment on the energy flow and carbon emissions of integrated steelmaking plants [J]. Energy Reports, 2017, 3: 29–36.
He H C, Guan H J, Zhu X, et al. Assessment on the energy flflow and carbon emissions of integrated steelmaking plants [J]. Energy Reports, 2017, 3: 29–36. 链接1

[24] Chen Q Q, Gu Y, Tang Z Y, et al. Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies: A case study in China [J]. Applied Energy, 2018, 220: 192–207. 链接1

[25] 山西省统计局. 2020年山西省统计年鉴 [R]. 太原: 山西省统计 局, 2020. Shanxi Provincial Bureau of Statistics. Statistical yearbook of Shanxi Province 2020 [R]. Taiyuan: Shanxi Provincial Bureau of Statistics, 2020.
Shanxi Provincial Bureau of Statistics. Statistical yearbook of Shanxi Province 2020 [R]. Taiyuan: Shanxi Provincial Bureau of Statistics, 2020. Chinese.

[26] 高成亮, 王太炎. 利用焦炉煤气生产直接还原铁技术 [J]. 燃料 与化工, 2010, 41(6): 15–17. Gao C L, Wang T Y. Technology of producing direct-reduced iron with coke oven gas [J]. Fuel & Chemical Processes, 2010, 41(6): 15–17.
Gao C L, Wang T Y. Technology of producing direct-reduced iron with coke oven gas [J]. Fuel & Chemical Processes, 2010, 41(6): 15–17. Chinese. 链接1

相关研究