资源类型

期刊论文 4

年份

2022 1

2020 1

2017 2

关键词

检索范围:

排序: 展示方式:

Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy

Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott

《环境科学与工程前沿(英文)》 2020年 第14卷 第4期 doi: 10.1007/s11783-020-1237-x

摘要: DPAA sorption data was found to fit the Freundlich equation. Kf was significantly positive correlated with oxalate-extractable Fe2O3. Ligand exchange was the main mechanism for DPAA sorption on soils. Bidentate binuclear and monodentate mononuclear DPAA bonds were identified. Diphenylarsinic acid (DPAA) is a phenyl arsenic compound derived from chemical warfare weapons. Macroscopic and microscopic work on DPAA sorption will provide useful information in predicting the partitioning and mobility of DPAA in the soil-water environment. Here, batch experiments and extended X-ray absorption fine structure (EXAFS) spectroscopy were used to investigate the sorption mechanisms of DPAA. The DPAA sorption data from 11 soil types was found to fit the Freundlich equation, and the sorption capacity, Kf, was significantly and positively correlated with oxalate-extractable Fe2O3. The Kf values of eight of the 11 untreated soils (1.51–113.04) significantly decreased upon removal of amorphous metal (hydr)oxides (0.51–13.37). When both amorphous and crystalline metal (hydr)oxides were removed from the untreated soils, the Kf values either decreased or slightly increased (0.65–3.09). Subsequent removal of soil organic matter from these amorphous and crystalline metal (hydr)oxide-depleted samples led to further decreases in Kf to 0.02–1.38, with only one exception (Sulfic Aquic-Orthic Halosols). These findings strongly suggest that ligand exchange reactions with amorphous metal (hydr)oxides contribute most to DPAA sorption on soils. EXAFS data provide further evidence that DPAA primarily formed bidentate binuclear (2C) and monodentate mononuclear (1V) coring-sharing complexes with As-Fe distances of 3.34 and 3.66 Å, respectively, on Fe (hydr)oxides. Comparison of these results with earlier studies suggests that 2C and 1V complexes of DPAA may be favored under low and high surface coverages, respectively, with the formation of 1V bonds possibly conserving the sorption sites or decreasing the steric hindrance derived from phenyl substituents.

关键词: Diphenylarsinic acid     EXAFS     Fe (hydr)oxide     Soil organic matter     Sorption mechanism    

Design of efficient Pt-based electrocatalysts through characterization by X-ray absorption spectroscopy

Nebojsa S. MARINKOVIC, Kotaro SASAKI, Radoslav R. ADZIC

《能源前沿(英文)》 2017年 第11卷 第3期   页码 236-244 doi: 10.1007/s11708-017-0487-1

摘要: A method is described to determine the internal structure of electrocatalyst nanoparticles by X-ray absorption spectroscopy (XAS). The nondestructive spectroscopic technique typically utilizing synchrotron radiation as the source measures changes in the X-ray absorption coefficient as a function of energy. The bulk technique has found its use for materials characterization in all scientific areas, including nanomaterials. The analysis of the internal structure of nanoparticles reveals interatomic distances and coordination numbers for each element, and their values and mutual relations indicate whether the elements form a homogeneous or heterogeneous mixture. The core-shell heterogeneous structure in which certain elements are predominantly located in the core, and others form the encapsulating shell is of particular importance in catalysis and electrocatalysis because it may reduce the amount of precious metals in nanoparticles by replacing the atoms in the core of nanoparticles with more abundant and cheaper alternatives. The examples of nanoparticle structures designed in the laboratory and the approach to model efficient catalysts through systematic analysis of XAS data in electrochemical systems consisting of two and three metals are also demonstrated.

关键词: X-ray absorption spectroscopy     EXAFS     XANES     nanocatalysts     core shell    

Sorption mechanisms of diphenylarsinic acid on natural magnetite and siderite: Evidence from sorption kinetics, sequential extraction and extended X-ray absorption fine-structure spectroscopy analysis

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1547-2

摘要:

• DPAA sorption followed pseudo-secondary and intra-particle diffusion models.

关键词: Diphenylarsinic acid (DPAA)     Sorption     Magnetite     Siderite     Sequential extraction     EXAFS    

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 401-409 doi: 10.1007/s11708-017-0496-0

摘要: As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH) nanoparticles as the cathode material, nano-sized β-Ni(OH) particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH) was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH) could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH) was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH) and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

关键词: nano-suspension flow battery     β-Ni(OH)2     scanning electronic microscopy (SEM)     X-ray diffraction (XRD)     X-ray adsorption near edge structure (XANES)     extended X-ray absorption fine structure (EXAFS)    

标题 作者 时间 类型 操作

Diphenylarsinic acid sorption mechanisms in soils using batch experiments and EXAFS spectroscopy

Meng Zhu, Yongming Luo, Ruyi Yang, Shoubiao Zhou, Juqin Zhang, Mengyun Zhang, Peter Christie, Elizabeth L. Rylott

期刊论文

Design of efficient Pt-based electrocatalysts through characterization by X-ray absorption spectroscopy

Nebojsa S. MARINKOVIC, Kotaro SASAKI, Radoslav R. ADZIC

期刊论文

Sorption mechanisms of diphenylarsinic acid on natural magnetite and siderite: Evidence from sorption kinetics, sequential extraction and extended X-ray absorption fine-structure spectroscopy analysis

期刊论文

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

期刊论文