资源类型

期刊论文 1216

会议视频 27

会议信息 4

年份

2024 2

2023 177

2022 190

2021 203

2020 106

2019 55

2018 29

2017 56

2016 36

2015 50

2014 46

2013 44

2012 21

2011 28

2010 46

2009 33

2008 23

2007 45

2006 5

2005 2

展开 ︾

关键词

SARS-CoV-2 7

COVID-19 5

微波散射计 5

碳中和 5

Cu(In 4

HY-2 4

2019 3

2型糖尿病 3

GPS 3

Ga)Se2 3

HY-2 卫星 3

HY-2A卫星 3

代谢与免疫 3

光催化 3

工程管理 3

微波辐射计 3

营养健康 3

4D打印 2

CCS 2

展开 ︾

检索范围:

排序: 展示方式:

Kinetics of pozzolanic reaction for preparation of flue gas desulfurizer from fly ash and Ca(OH)2

WANG Jingang, HU Jinbang, WANG Daobin, DUAN Zhenya

《化学科学与工程前沿(英文)》 2007年 第1卷 第3期   页码 266-270 doi: 10.1007/s11705-007-0048-y

摘要: A kinetic model of the pozzolanic reaction for the preparation of flue gas desulfurizers from fly ash and Ca(OH) was deduced on the basis of solid phase reaction kinetic theory. Kinetic expressions and parameters were obtained and verified by experiment. A comparison of calculated results with experimental results showed that precision in kinetic expressions was good. The apparent reaction rate constants of the pozzolanic reaction could be raised by increasing the specific surface area of fly ash and the hydration temperature, and by using a suitable additive.

关键词: comparison     calculated     pozzolanic reaction     precision     preparation    

Laboratory study on high-temperature adsorption of HCl by dry-injection of Ca(OH)

Junjun TAN,Guohua YANG,Jingqiao MAO,Huichao DAI

《环境科学与工程前沿(英文)》 2014年 第8卷 第6期   页码 863-870 doi: 10.1007/s11783-013-0618-9

摘要: Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500°C–700°C and (Ca)/ (Cl)molar ratios of 1.0–5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH) . Mainly, the adsorption efficiency of HCl and utilization efficiency of Calcium were studied, by varying relevant factors including (Ca)/ (Cl), temperature, feeding method, water vapor and CO . With a relatively higher HCl concentration of 1000 ppm, the experimental results revealed that 600°C may be the optimum temperature for HCl adsorption when optimum (Ca)/ (Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with (Ca)/ (Cl) = 2.5 at 600°C. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO , and the utilization efficiency of calcium could be up to 74.4% without CO , while was only 36.8% with CO when (Ca)/ (Cl) was 2.5 at 600°C.

关键词: acid gas HCl     Ca(OH)2     dry adsorption     high temperature     dual-layer granular bed filter    

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 401-409 doi: 10.1007/s11708-017-0496-0

摘要: As part of an effort to build a prototype flow battery system using a nano-suspension containing β-Ni(OH) nanoparticles as the cathode material, nano-sized β-Ni(OH) particles with well-controlled particle size and morphology were synthesized via the one-step precipitation of a NiCl precursor. The composition and morphology of the nanoparticles were characterized by scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The XRD patterns confirmed that β-Ni(OH) was successfully synthesized, while SEM results showed that the particle sizes range from 70 to 150 nm. To ensure that Ni(OH) could be employed in the nano-suspension flow battery, the electrochemical performance of the synthesized β-Ni(OH) was initially tested in pouch cells through charge/discharge cycling. The phase transformations occurring during charge/discharge were investigated using X-ray absorption spectroscopy to obtain the shift in the oxidation state of Ni (X-ray adsorption near edge structure, XANES) and the distances between Ni and surrounding atoms in charged and discharged states (extended X-ray absorption fine structure, EXAFS). XANES results indicated that the electrode in the discharged state was a mixture of phases because the edge position did not shift back completely. XAFS results further proved that the discharge capacity was provided by β-NiOOH and the ratio between β-Ni(OH) and g-NiOOH in the electrode in the discharged state was 71:29. Preliminary nano-suspension tests in a lab-scale cell were conducted to understand the behavior of the nano-suspension during charge/discharge cycling and to optimize the operating conditions.

关键词: nano-suspension flow battery     β-Ni(OH)2     scanning electronic microscopy (SEM)     X-ray diffraction (XRD)     X-ray adsorption near edge structure (XANES)     extended X-ray absorption fine structure (EXAFS)    

Formation of CaCO hollow microspheres in carbonated distiller waste from Solvay soda ash plants

《化学科学与工程前沿(英文)》   页码 1659-1671 doi: 10.1007/s11705-022-2173-z

摘要: For decades, distiller waste and CO2 were not the first choice for production of high valued products. Here, CaCO3 hollow microspheres, a high-value product was synthesized from such a reaction system. The synthetic methods, the formation mechanism and operational cost were discussed. When 2.5 L·min–1·L–1 CO2 was flowed into distiller waste (pH = 11.4), spheres with 4–13 μm diameters and about 2 μm shell thickness were obtained. It is found that there is a transformation of CaCO3 particles from solid-cubic nuclei to hollow spheres. Firstly, the Ca(OH)2 in the distiller waste stimulated the nucleation of calcite with a non-template effect and further maintained the calcite form and prevented the formation of vaterite. Therefore, in absence of auxiliaries, the formation of hollow structures mainly depended on the growth and aging of CaCO3. Studies on the crystal morphology and its changes during the growth process point to the inside–out Ostwald effect in the formation of hollow spheres. Change in chemical properties of the bulk solution caused changes in interfacial tension and interfacial energy, which promoted the morphological transformation of CaCO3 particles from cubic calcite to spherical clusters. Finally, the flow process for absorption of CO2 by distiller waste was designed and found profitable.

关键词: distiller waste     CO2     hollow microsphere     CaCO3     Ca(OH)2     inside−out Ostwald effect    

Stability of Ni/SiO

Bettina Stolze,Juliane Titus,Stephan A. Schunk,Andrian Milanov,Ekkehard Schwab,Roger Gläser

《化学科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 281-293 doi: 10.1007/s11705-016-1568-0

摘要: Ni/SiO -ZrO catalysts with Ni loadings of 1 to 13 wt-% were prepared, characterized by elemental analysis, X-ray diffraction, N sorption, temperature programmed oxidation, temperature programmed reduction, and tested for their activity and stability in the dry reforming of methane with carbon dioxide at 850 °C, gas hourly space velocity of 6000 and 1800 h and atmospheric pressure. The SiO -ZrO support as obtained through a simple and efficient sol-gel synthesis is highly porous ( = 90 m ·g , = 4.4 nm) with a homogeneously distributed Si-content of 3 wt-%. No loss of Si or formation of monoclinic ZrO , even after steaming at 850 °C for 160 h, was detectable. The catalyst with 5 wt-% Ni loading in its fully reduced state is stable over 15?h on-stream in the dry reforming reaction. If the catalyst was not fully reduced, a reduction during the early stages of dry reforming is accompanied by the deposition of up to 44 mg·g carbon as shown by experiments in a magnetic suspension balance. Rapid coking occurs for increased residence times and times-on-stream starting at 50 h. The Ni loading of 5 wt-% on SiO -ZrO was shown to provide an optimal balance between activity and coking tendency.

关键词: Ni/SiO2-ZrO2     synthesis gas     dry reforming     coking     steaming    

Generation of enhanced stability of SnO/In(OH)/InP for photocatalytic water splitting by SnO protection

《能源前沿(英文)》 2021年 第15卷 第3期   页码 710-720 doi: 10.1007/s11708-021-0764-x

摘要: InP shows a very high efficiency for solar light to electricity conversion in solar cell and may present an expectation property in photocatalytic hydrogen evolution. However, it suffers serious corrosion in water dispersion. In this paper, it is demonstrated that the stability and activity of the InP-based catalyst are effectively enhanced by applying an anti-corrosion SnO layer and In(OH)3 transition layer, which reduces the crystal mismatch between SnO and InP and increases charge transfer. The obtained Pt/SnO/In(OH)3/InP exhibits a hydrogen production rate of 144.42 µmol/g in 3 h under visible light illumination in multi-cycle tests without remarkable decay, 123 times higher than that of naked In(OH)3/InP without any electron donor under visible irradiation.

关键词: SnO/In(OH)3/InP photocatalyst     enhanced activity and stability for water splitting     corrosion inhibition     enhancing charge transfer and decreasing crystal mismatch    

Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals

Huibin Guo, Ning Wang, Xiang Li

《环境科学与工程前沿(英文)》 2021年 第15卷 第2期 doi: 10.1007/s11783-020-1313-2

摘要: Abstract • Metformin consumes O2−• and OH• induced by PM are proposed. • OH• dominated the oxidation of metformin compared with O2−• • Metformin can prevent the harm of ROS induced by PM to human health. • Antioxidative potential of metformin was first proposed to provide measures. Exposure to particulate matter (PM) can lead to the excessive accumulation of reactive oxygen species (ROS), which causes oxidative stress and endangers human health. In this study, the effects of metformin on PM-induced radicals were investigated, and the antioxidation reaction mechanism of metformin was analyzed by the density functional theory (DFT) method. The corresponding results revealed that the consumption rate of dithiothreitol (DTT) increased as the metformin concentration (0–40 mmol/L) increased under exposure to PM active components. Moreover, the OH radical content decreased as the metformin concentration increased. This result may be related to the consumption of PM-induced OH radicals by metformin, which promotes the DTT consumption rate. Additionally, because the initiation reaction has a high barrier, the oxidation reaction rate between metformin and •O2− is not very fast, although various catalysts may be present in the human environment. Importantly, we found that the barrier of metformin induced by OH radicals is only 9.6 kcal/mol while the barrier of metformin induced by oxygen is 57.9 kcal/mol, which shows that the rate of the •OH-initiated oxidative reaction of metformin is much faster and that this reaction path occurs more easily. By sample analysis, the mean OH radical generation was 55 nmol/min/g (ranging from 5 to 105 nmol/min/g) on haze days and 30 nmol/min/g (ranging from 10 to 50 nmol/min/g) on non-haze days. Moreover, OH radical generation was higher on haze days than on neighboring non-haze days. Taken together, all data suggest that metformin could consume the PM-induced radicals, such as OH radicals and •O2−, thereby providing health protection.

关键词: Antioxidative potential     Metformin     Mechanism     OH radical     Health protection.    

Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al

Linxia Yan, Senlin Tian, Jian Zhou, Xin Yuan

《环境科学与工程前沿(英文)》 2016年 第10卷 第6期 doi: 10.1007/s11783-016-0872-8

摘要: ? The Cu–Ni/γ-Al O catalyst was prepared to study HCN hydrolysis ? On catalyst calcined at 400°C, the HCN removal efficiency reaches a maximum. ? HCN removal is the highest at 480 min at a H O/HCN volume ratio of 150 ? The presence of CO facilitates HCN hydrolysis and increases NH production. ? O increases the HCN removal and NO production but decreases NH production GRAPHIC ABSTRACT To decompose efficiently hydrogen cyanide (HCN) in exhaust gas, g-Al O -supported bimetallic-based Cu–Ni catalyst was prepared by incipient-wetness impregnation method. The effects of the calcination temperature, H O/HCN volume ratio, reaction temperature, and the presence of CO or O on the HCN removal efficiency on the Cu–Ni/g-Al O catalyst were investigated. To examine further the efficiency of HCN hydrolysis, degradation products were analyzed. The results indicate that the HCN removal efficiency increases and then decreases with increasing calcination temperature and H O/HCN volume ratio. On catalyst calcined at 400°C, the efficiency reaches a maximum close to 99% at 480 min at a H O/HCN volume ratio of 150. The HCN removal efficiency increases with increasing reaction temperature within the range of 100°C–500°C and reaches a maximum at 500°C. This trend may be attributed to the endothermicity of HCN hydrolysis; increasing the temperature favors HCN hydrolysis. However, the removal efficiencies increases very few at 500°C compared with that at 400°C. To conserve energy in industrial operations, 400°C is deemed as the optimal reaction temperature. The presence of CO facilitates HCN hydrolysis andincreases NH production. O substantially increases the HCN removal efficiency and NO production but decreases NH production.

关键词: Hydrogen cyanide     Cu–Ni/g-Al2O3     Catalytic hydrolysis    

Effects of MgO promoter on properties of Ni/Al2O3 catalysts for partial oxidation of methane to syngas

QIU Yejun, CHEN Jixiang, ZHANG Jiyan

《化学科学与工程前沿(英文)》 2007年 第1卷 第2期   页码 167-171 doi: 10.1007/s11705-007-0031-7

摘要: The effects of MgO promoter on the physico-chemical properties and catalytic performance of Ni/AlO catalysts for the partial oxidation of methane to syngas were studied by means of BET, XRD, H-TPR, TEM and performance evaluation. It was found that the MgO promoter benefited from the uniformity of nickel species in the catalysts, inhibited the formation of NiAlO spinel and improved the interaction between nickel species and support. These results were related to the formation of NiO MgO solid solution and MgAlO spinel. Moreover, for the catalysts with a proper amount of MgO promoter, the nickel dispersiveness was enhanced, therefore making their catalytic performance in methane partial oxidation improved. However, the excessive MgO promoter exerted a negative effect on the catalytic performance. Meanwhile, the basicity of MgO promoted the reversed water gas shift reaction, which led to an increase in CO selectivity and a decrease in H2 selectivity. The suitable content of MgO promoter in Ni/AlO catalyst was ?7 wt-%.

关键词: excessive     selectivity     decrease     dispersiveness     physico-chemical    

The kinetic study of light alkene syntheses by CO 2 hydrogenation over Fe-Ni catalysts

Yaling ZHAO, Li WANG, Xiwei HAO, Jiazhou WU,

《化学科学与工程前沿(英文)》 2010年 第4卷 第2期   页码 153-162 doi: 10.1007/s11705-009-0241-2

摘要: A kinetics model of CO hydrogenation over iron-nickel catalysts was developed based on the detailed mechanism of alkenes re-adsorption and secondary reaction. The corresponding kinetical experiments are conducted in a continuous fixed bed reactor. The effect of reaction conditions on catalyst performance was analyzed according to the results of orthogonal experiments. The results of the experiments show that more methane in products can be obtained with iron-nickel catalysts, the trend of which is consistent with the thermodynamic analysis. However, the content of alkenes in products is equivalent with that of alkanes. This shows that the reaction is controlled by kinetics. In all, the results of the experiments also substantiate that the model can give a good representation of the reaction mechanism of CO hydrogenation over iron-nickel catalysts. The parameters of this model give a better explanation for the question why the iron-nickel catalysts have a higher selectivity toward alkenes compared with other iron-based catalysts.

关键词: representation     corresponding     orthogonal     thermodynamic     consistent    

CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2

Kechao Zhao,Zhenhua Li,Li Bian

《化学科学与工程前沿(英文)》 2016年 第10卷 第2期   页码 273-280 doi: 10.1007/s11705-016-1563-5

摘要: A series of Mn-promoted 15 wt-% Ni/Al O catalysts were prepared by an incipient wetness impregnation method. The effect of the Mn content on the activity of the Ni/Al O catalysts for CO methanation and the co-methanation of CO and CO in a fixed-bed reactor was investigated. The catalysts were characterized by N physisorption, hydrogen temperature-programmed reduction and desorption, carbon dioxide temperature-programmed desorption, X-ray diffraction and high-resolution transmission electron microscopy. The presence of Mn increased the number of CO adsorption sites and inhibited Ni particle agglomeration due to improved Ni dispersion and weakened interactions between the nickel species and the support. The Mn-promoted 15 wt-% Ni/Al O catalysts had improved CO methanation activity especially at low temperatures (250 to 400 °C). The Mn content was varied from 0.86% to 2.54% and the best CO conversion was achieved with the 1.71Mn-Ni/Al O catalyst. The co-methanation tests on the 1.71Mn-Ni/Al O catalyst indicated that adding Mn markedly enhanced the CO methanation activity especially at low temperatures but it had little influence on the CO methanation performance. CO methanation was more sensitive to the reaction temperature and the space velocity than the CO methanation in the co-methanation process.

关键词: Mn promotion     nickel catalysts     CO2 methanation     co-methanation of CO and CO2    

Corrosion behavior of Fe–Cr–Ni based alloys exposed to molten MgCl2–KCl–NaCl salt with over-added

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1608-1619 doi: 10.1007/s11705-023-2349-1

摘要: MgCl2–NaCl–KCl salts mixture shows great potential as a high-temperature (> 700 °C) thermal energy storage material in next-generation concentrated solar power plants. Adding Mg into molten MgCl2–NaCl–KCl salt as a corrosion inhibitor is one of the most effective and cost-effective methods to mitigate the molten salt corrosion of commercial Fe–Cr–Ni alloys. However, it is found in this work that both stainless steel 310 and Incoloy 800H samples were severely corroded after 500 h immersion test at 700 °C when the alloy samples directly contacted with the over-added Mg in the liquid form. The corrosion attack is different from the classical impurity-driven corrosion in molten chloride salts found in previous work. Microscopic analysis indicates that Ni preferentially leaches out of alloy matrix due to the tendency to form MgNi2/Mg2Ni compounds. The Ni-depletion leads to the formation of a porous corrosion layer on both alloys, with the thickness around 204 µm (stainless steel 310) and 1300 µm (Incoloy 800H), respectively. These results suggest that direct contact of liquid Mg with Ni-containing alloys should be avoided during using Mg as a corrosion inhibitor for MgCl2–NaCl–KCl or other chlorides for high temperature heat storage and transfer.

关键词: concentrated solar power (CSP)     Mg corrosion inhibitor     Mg–Ni intermetallic     salt purification     thermal energy storage (TES)    

An investigation of the CHOH and CO selectivity of CO hydrogenation over Cu–Ce–Zr catalysts

《化学科学与工程前沿(英文)》 2022年 第16卷 第6期   页码 950-962 doi: 10.1007/s11705-022-2162-2

摘要: A series of Cu–Ce–Zr catalysts with different Ce contents are applied to the hydrogenation of CO2 to CO/CH3OH products. The Cu–Ce–Zr catalyst with 2 wt% Ce loading shows higher CO selectivity (SCO = 0.0%–87.8%) from 200–300 °C, while the Cu–Ce–Zr catalyst with 8 wt% Ce loading presents higher CO2 conversion ( XCO2 = 5.4%–15.6%) and CH3OH selectivity ( SCH3OH = 97.8%–40.6%). The number of hydroxyl groups and solid solution nature play a significant role in changing the reaction pathway. The solid solution enhances the CO2 adsorption ability. At the CO2 adsorption step, a larger number of hydroxyl groups over the Cu–Ce–Zr catalyst with 8 wt% Ce loading leads to the production of H-containing adsorption species. At the CO2 hydrogenation step, a larger number of hydroxyl groups assists in encouraging the further hydrogenation of intermediate species to CH3OH and improving the hydrogenation rate. Hence, the Cu–Ce–Zr catalyst with 8 wt% Ce loading favors CH3OH selectivity and CO2 activation, while CO is preferred on the Cu–Ce–Zr catalyst with 2 wt% Ce loading, a smaller number of hydroxyl groups and a solid solution nature. Additionally, high-pressure in situ diffuse reflectance infrared Fourier transform spectroscopy shows that CO is produced from formate decomposition and that both monodentate formate and bidentate formate are active intermediate species of CO2 hydrogenation to CH3OH.

关键词: CO2 hydrogenation     Cu–Ce–Zr     hydroxyls     CO/CH3OH selectivity    

ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis

《医学前沿(英文)》   页码 972-992 doi: 10.1007/s11684-023-0990-1

摘要: Owing to the increasing incidence and prevalence of inflammatory bowel disease (IBD) worldwide, effective and safe treatments for IBD are urgently needed. Hydrogen sulfide (H2S) is an endogenous gasotransmitter and plays an important role in inflammation. To date, H2S-releasing agents are viewed as potential anti-inflammatory drugs. The slow-releasing H2S donor 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione (ADT-OH), known as a potent therapeutic with chemopreventive and cytoprotective properties, has received attention recently. Here, we reported its anti-inflammatory effects on dextran sodium sulfate (DSS)-induced acute (7 days) and chronic (30 days) colitis. We found that ADT-OH effectively reduced the DSS-colitis clinical score and reversed the inflammation-induced shortening of colon length. Moreover, ADT-OH reduced intestinal inflammation by suppressing the nuclear factor kappa-B pathway. In vivo and in vitro results showed that ADT-OH decreased intestinal permeability by increasing the expression of zonula occludens-1 and occludin and blocking increases in myosin II regulatory light chain phosphorylation and epithelial myosin light chain kinase protein expression levels. In addition, ADT-OH restored intestinal microbiota dysbiosis characterized by the significantly increased abundance of Muribaculaceae and Alistipes and markedly decreased abundance of Helicobacter, Mucispirillum, Parasutterella, and Desulfovibrio. Transplanting ADT-OH-modulated microbiota can alleviate DSS-induced colitis and negatively regulate the expression of local and systemic proinflammatory cytokines. Collectively, ADT-OH is safe without any short-term (5 days) or long-term (30 days) toxicological adverse effects and can be used as an alternative therapeutic agent for IBD treatment.

关键词: inflammatory bowel disease     ADT-OH     intestinal permeability     gut microbiota    

Catalytic ozonation of reactive red X-3B in aqueous solution under low pressure: decolorization and OH

Hong SUN,Min SUN,Yaobin ZHANG,Xie QUAN

《环境科学与工程前沿(英文)》 2015年 第9卷 第4期   页码 591-595 doi: 10.1007/s11783-014-0694-5

摘要: Catalytic ozonation of Reactive Red X-3B in aqueous solution had been carried out in an ozone oxidation reactor where Mn-Fe-ceramic honeycomb was used as the catalysts. The presence of Mn-Fe-ceramic honeycomb catalyst could obviously improve the decoloration efficiency of Reactive Red X-3B and the utilization efficiency of ozone compared to the results from non-catalytic ozonation. Adsorption of Reactive Red X-3B had no obviously influence on the degradation efficiency. Addition of tert-butanol significantly decreased the degradation efficiency, indicating that the degradation of Reactive Red X-3B followed the mechanism of hydroxyl radical (OH·) oxidation. The operating variables such as reaction pressure and ozone supply had a positive influence on the degradation efficiency, mainly attributing to facilitate the ozone decomposition and OH· formation.

关键词: catalytic ozonation     reactive red X-3B     ceramic honeycomb     hydroxyl radical (OH·)    

标题 作者 时间 类型 操作

Kinetics of pozzolanic reaction for preparation of flue gas desulfurizer from fly ash and Ca(OH)2

WANG Jingang, HU Jinbang, WANG Daobin, DUAN Zhenya

期刊论文

Laboratory study on high-temperature adsorption of HCl by dry-injection of Ca(OH)

Junjun TAN,Guohua YANG,Jingqiao MAO,Huichao DAI

期刊论文

β-Nickel hydroxide cathode material for nano-suspension redox flow batteries

Yue LI, Cheng HE, Elena V. TIMOFEEVA, Yujia DING, Javier PARRONDO, Carlo SEGRE, Vijay RAMANI

期刊论文

Formation of CaCO hollow microspheres in carbonated distiller waste from Solvay soda ash plants

期刊论文

Stability of Ni/SiO

Bettina Stolze,Juliane Titus,Stephan A. Schunk,Andrian Milanov,Ekkehard Schwab,Roger Gläser

期刊论文

Generation of enhanced stability of SnO/In(OH)/InP for photocatalytic water splitting by SnO protection

期刊论文

Antioxidative potential of metformin: Possible protective mechanism against generating OH radicals

Huibin Guo, Ning Wang, Xiang Li

期刊论文

Catalytic hydrolysis of gaseous HCN over Cu–Ni/γ-Al

Linxia Yan, Senlin Tian, Jian Zhou, Xin Yuan

期刊论文

Effects of MgO promoter on properties of Ni/Al2O3 catalysts for partial oxidation of methane to syngas

QIU Yejun, CHEN Jixiang, ZHANG Jiyan

期刊论文

The kinetic study of light alkene syntheses by CO 2 hydrogenation over Fe-Ni catalysts

Yaling ZHAO, Li WANG, Xiwei HAO, Jiazhou WU,

期刊论文

CO2 methanation and co-methanation of CO and CO2 over Mn-promoted Ni/Al2

Kechao Zhao,Zhenhua Li,Li Bian

期刊论文

Corrosion behavior of Fe–Cr–Ni based alloys exposed to molten MgCl2–KCl–NaCl salt with over-added

期刊论文

An investigation of the CHOH and CO selectivity of CO hydrogenation over Cu–Ce–Zr catalysts

期刊论文

ADT-OH improves intestinal barrier function and remodels the gut microbiota in DSS-induced colitis

期刊论文

Catalytic ozonation of reactive red X-3B in aqueous solution under low pressure: decolorization and OH

Hong SUN,Min SUN,Yaobin ZHANG,Xie QUAN

期刊论文