资源类型

期刊论文 11

年份

2022 1

2018 1

2017 1

2014 2

2012 1

2011 1

2010 1

2009 1

2008 2

展开 ︾

关键词

展开 ︾

检索范围:

排序: 展示方式:

Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property

Heming LIN, Dongming QI, Jian HAN, Zhiqi CAI, Minghua WU

《化学科学与工程前沿(英文)》 2009年 第3卷 第2期   页码 176-181 doi: 10.1007/s11705-009-0203-8

摘要: A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the impact resistance property of PP/KT specimens (with similar interparticles distance, 1.8 μm) was studied by notched izod impact tests. It was found that the brittle-ductile transition (BDT) of the PP/KT microcomposites took place at the filler content of about 4%, and the impact strength attains the maximum at 5% (with filler particles size of 1.5 μm), which is about 2.5 times that of unfilled iPP specimens. The impact fracture morphology was investigated by scanning electron microscopy (SEM). For the PP/KT specimens and the high-density polyethylene/KT (HDPE/KT) specimens in ductile fracture mode, many microfibers could be found on the whole impact fracture surface. It was the filler particles that induced the plastic deformation of interparticles ligament and hence improved the capability of iPP matrix on absorbing impact energy dramatically. The determinants on the BDT were further discussed on the basis of stress concentration and debonding resistance. It can be concluded that aside from the interparticle distance, the filler particles size also plays an important role in semicrystalline polymer toughening.

关键词: rigid organic filler     polypropylene     impact resistance    

Dispersion of a novel phenolic rigid organic filler in isotactic polypropylene matrix by solution-mixing

Dongming QI, Xiaoli ZHAO, Zhijie CHEN, Peng HUANG, Jun CAO

《化学科学与工程前沿(英文)》 2012年 第6卷 第4期   页码 395-402 doi: 10.1007/s11705-012-1269-2

摘要: A novel phenolic rigid organic filler (named KD) with a high melting point was dispersed in an isotactic polypropylene (iPP) matrix by solution-mixing and/or melt-mixing. A series of KD/iPP blends was prepared with or without addition of maleic anhydride-grafted polypropylene (MAPP) as a compatibilizer. Influences of MAPP and mixing methods on the filler dispersion were studied using polaried optical microscope (POM), scanning electron microscope (SEM) and tensile test. The filler particles are always inclined to form large irregular aggregates in the iPP matrix due to their significant differences in polarity and solubility in solvent. However, an iPP/MAPP/KD (PMK) blend containing filler particles with a quasi-spherical shape (~97.8 nm in diameter) and narrow particle size distribution (polydispersity index= 1.076) was successfully prepared by incorporating MAPP to reduce the interfacial tension and surface free energy between the dispersion phase and the continuous phase, and adopting a spray-drying method after solution-mixing to suppress the increase of the size of the dispersed phase during the removal of solvent.

关键词: dispersion     rigid organic filler     isotactic polypropylene     mixing    

Influence of the filler materials on flux-free brazing of pure aluminium (1050)

Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA,

《机械工程前沿(英文)》 2010年 第5卷 第1期   页码 47-51 doi: 10.1007/s11465-009-0079-9

摘要: In the present study, samples of pure aluminium (1050) were deposited by cold spraying with filler materials such as Al12Si, Al7Si, Al12Si-4%Cu, and the Al-Si-based filler material A, which was especially developed for flux-free brazing by the Surface Engineering Institute. Besides, pure Si powder was also sprayed. The coated samples were heat-treated under different conditions and were brazed under an argon atmosphere without fluxes or with the flux Nokolok by an induction heating system. The shear strength of the brazed joints was determined. The results show that the filler materials could be well deposited by cold spraying. A thin layer of brittle Si could also form due to the strong deformation of the substrate surface. The heat treatments showed that a very good metallurgical bond between the filler materials and the substrate could be realized by the deposition by cold spraying. The Al7Si deposited samples could not be brazed without fluxes under the given conditions. The samples deposited with other filler materials could be brazed without fluxes. The in-situ diffusion process made it possible to braze the Si-deposited samples at 580°C. The joints of the samples deposited with the filler material showed the highest shear strength of 41 MPa, whereas the values of the Al12Si and Si deposited samples were less than 20 MPa. The employment of the flux Nikolok significantly increased the shear strength of the Al12Si deposited samples to more than 53 MPa.

关键词: aluminium     flux-free brazing     cold spraying     shear strength    

Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation

QI Dongming, YANG Lei, WU Minghua, LIN Heming, NITTA Kohhei

《化学科学与工程前沿(英文)》 2008年 第2卷 第3期   页码 236-241 doi: 10.1007/s11705-008-0034-z

摘要: A novel phenolic rigid organic filler (KT) was melt-mixed with an isotactic polypropylene (iPP) to prepare a series of PP/KT composites, with or without maleic anhydride grafted polypropylene (MAPP) as compatilizer. The evolution of filler morphology during melt-mixing and melt-pressure processes was monitored by scanning electron microscope (SEM) and polarized optical microscope (POM). The influences of shear force, pressure time, filler content and MAPP concentration on the final filler dispersion were studied. We found that this rigid organic filler readily melted and dispersed homogenously into the iPP matrix through a fission-fusion process during the melt-mixing process. Thus a balanced dispersion, which was closely related to shear force and MAPP concentration, can be achieved. During the melt-pressure process, parts of the filler particles combined gradually through a coalescence process. However, the incorporation of MAPP can effectively inhibit the tendency to coalesce and refine the filler particles sizes into nanoscale. Thus, a series of PP/KT composites with controllable filler particles size and narrow size distribution can be obtained just by adjusting process conditions and MAPP concentration. In addition, due to the in-situ formation mechanism, the filler phase possessed a typical solid true-spherical shape.

关键词: morphology     concentration     tendency     controllable     addition    

Phenolic rigid organic filler/isotactic polypropylene composites. II. Tensile properties

QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei

《化学科学与工程前沿(英文)》 2008年 第2卷 第4期   页码 396-401 doi: 10.1007/s11705-008-0077-1

摘要: A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the tensile properties of PP/KT microcomposites was studied by uniaxial tensile test and the morphological structures of the stretched specimens were observed by scanning electron microscopy (SEM) and polarized optical microscopy (POM). We found that the Young’s modulus of PP/KT specimens increased with filler content, while the yield and break of the specimens are related to the filler particles size. The yield stress, the breaking stress and the ultimate elongation of PP/KT specimens were close to those of unfilled iPP specimens when the maximal filler particles size is less than a critical value, which is 7 ?m at a crosshead speed of 10 mm/min and 3 ?m at 200 mm/min, close to that of glass bead but far more than those of other rigid inorganic filler particles. The interfacial interaction was further estimated from yield stress, indicating that KT particles have a moderate interfacial interaction with iPP matrix. Thus, the incorporation of small KT particles can reinforce iPP matrix and simultaneously cause few detrimental effects on the other excellent tensile properties of iPP matrix, due to their organic nature, higher specific area, solid true-spherical shape and the homogenous dispersion of the ROF particles in microcomposites.

关键词: maximal     uniaxial tensile     unfilled     excellent tensile     influence    

Performance of a hybrid anaerobic-contact oxidation biofilm baffled reactor for the treatment of decentralized molasses wastewater

Minmin LIU,Ying ZHAO,Beidou XI,Li’an HOU,Xunfeng XIA

《环境科学与工程前沿(英文)》 2014年 第8卷 第4期   页码 598-606 doi: 10.1007/s11783-013-0576-2

摘要: A novel hybrid anaerobic-contact oxidation biofilm baffled reactor (HAOBR) was developed to simultaneously remove nitrogenous and carbonaceous organic pollutants from decentralized molasses wastewater in the study. The study was based on the inoculation of anaerobic granule sludge in anaerobic compartments and the installation of combination filler in aerobic compartments. The performance of reactor system was studied regarding the hydraulic retention time (HRT), microbial characteristics and the gas water ratio (GWR). When the HRT was 24h and the GWR was 20:1, total ammonia and chemical oxygen demand (COD) of the effluent were reduced by 99% and 91.8%, respectively. The reactor performed stably for treating decentralized molasses wastewater. The good performance of the reactor can be attributed to the high resistance of COD and hydraulic shock loads. In addition, the high solid retention time of contact oxidation biofilm contributed to stable performance of the reactor.

关键词: combination filler     contact oxidation biofilm     food wastewater     anaerobic baffled reactor    

Morphological and mechanical characterization of a PMMA/CdS nanocomposite

Vishal MATHUR, Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA

《化学科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 258-263 doi: 10.1007/s11705-010-1014-7

摘要: Thick film of poly(methyl methacrylate) (PMMA)/CdS nanocomposite have been synthesized by the solution casting process. The nanostructure of the CdS particles has been ascertained through the small angle X-ray scattering (SAXS) technique. The surface morphological characterization of the PMMA/CdS nanocomposite has been done through scanning electron microscopy (SEM) analysis. The variation of mechanical loss factor (Tan ) with temperature and tensile properties of prepared samples have been studied using Dynamic Mechanical Analyzer (DMA). This study reveals that the glass transition temperature ( ), Young’s modulus, and fracture energy of the PMMA/CdS nanocomposite are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanoparticles and the matrix of PMMA.

关键词: poly(methyl methacrylate) (PMMA)     filler nanoparticles     polymer semiconducting nanocomposite     tensile properties     glass transition temperature    

Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers

Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1074-3

摘要:

Methane yield increased 22 times from low-strength wastewater by applying conductive fillers.

Conductive fillers accelerated the start-up stage of anaerobic biofilm reactor.

Conductive fillers altered methanogens structure.

关键词: Low-strength wastewater     Methane production     Conductive filler     Microbial community structure    

Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

K. Bobzin,L. Zhao,N. Kopp,S. Samadian Anavar

《机械工程前沿(英文)》 2014年 第9卷 第1期   页码 71-74 doi: 10.1007/s11465-014-0291-0

摘要:

Applications like solid oxide fuel cells and sensors increasingly demand the possibility to braze ceramics to metals with a good resistance to high temperatures and oxidative atmospheres. Commonly used silver based active filler metals cannot fulfill these requirements, if application temperatures higher than 600°C occur. Au and Pd based active fillers are too expensive for many fields of use. As one possible solution nickel based active fillers were developed. Due to the high brazing temperatures and the low ductility of nickel based filler metals, the modification of standard nickel based filler metals were necessary to meet the requirements of above mentioned applications. To reduce thermally induced stresses wide brazing gaps and the addition of Al2O3 and WC particles to the filler metal were applied. In this study, the microstructure of the brazed joints and the thermo-chemical reactions between filler metal, active elements and WC particles were analyzed to understand the mechanism of the so called wide gap active brazing process. With regard to the behavior in typical application oxidation and thermal cycle tests were conducted as well as tensile tests.

关键词: wide gap     active brazing     nickel filler metals     high temperature application     WC     Al2O3    

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

《能源前沿(英文)》 2022年 第16卷 第5期   页码 706-733 doi: 10.1007/s11708-022-0833-9

摘要: Solid-state electrolytes (SSEs) can address the safety issue of organic electrolyte in rechargeable lithium batteries. Unfortunately, neither polymer nor ceramic SSEs used alone can meet the demand although great progress has been made in the past few years. Composite solid electrolytes (CSEs) composed of flexible polymers and brittle but more conducting ceramics can take advantage of the individual system for solid-state lithium metal batteries (SSLMBs). CSEs can be largely divided into two categories by the mass fraction of the components: “polymer rich” (PR) and “ceramic rich” (CR) systems with different internal structures and electrochemical properties. This review provides a comprehensive and in-depth understanding of recent advances and limitations of both PR and CR electrolytes, with a special focus on the ion conduction path based on polymer-ceramic interaction mechanisms and structural designs of ceramic fillers/frameworks. In addition, it highlights the PR and CR which bring the leverage between the electrochemical property and the mechanical property. Moreover, it further prospects the possible route for future development of CSEs according to their rational design, which is expected to accelerate the practical application of SSLMBs.

关键词: composite solid electrolytes     active filler/framework     ion conduction path     interphase compatibility     multilayer design    

Recycling polymeric waste from electronic and automotive sectors into value added products

Abhishek Kumar, Veena Choudhary, Rita Khanna, Romina Cayumil, Muhammad Ikram-ul-Haq, Veena Sahajwalla, Shiva Kumar I. Angadi, Ganapathy E. Paruthy, Partha S. Mukherjee, Miles Park

《环境科学与工程前沿(英文)》 2017年 第11卷 第5期 doi: 10.1007/s11783-017-0991-x

摘要: The environmentally sustainable disposal and recycling of ever increasing volumes of electronic waste has become global waste management issue. The addition of up to 25% polymeric waste PCBs (printed circuit boards) as fillers in polypropylene (PP) composites was partially successful: while the tensile modulus, flexural strength and flexural modulus of composites were enhanced, the tensile and impact strengths were found to decrease. As a lowering of impact strength can significantly limit the application of PP based composites, it is necessary to incorporate impact modifying polymers such as rubbery particles in the mix. We report on a novel investigation on the simultaneous utilization of electronic and automotive rubber waste as fillers in PP composites. These composites were prepared by using 25 wt.% polymeric PCB powder, up to 9% of ethylene propylene rubber (EPR), and PP: balance. The influence of EPR on the structural, thermal, mechanical and rheological properties of PP/PCB/EPR composites was investigated. While the addition of EPR caused the nucleation of the β crystalline phase of PP, the onset temperature for thermal degradation was found to decrease by 8%. The tensile modulus and strength decreased by 16% and 19%, respectively; and the elongation at break increased by ~71%. The impact strength showed a maximum increase of ~18% at 7 wt.%–9 wt.% EPR content. Various rheological properties were found to be well within the range of processing limits. This novel eco-friendly approach could help utilize significant amounts of polymeric electronic and automotive waste for fabricating valuable polymer composites.

关键词: E-waste     Polymer composites     Recycling     Rubber     Waste PCBs     Filler    

标题 作者 时间 类型 操作

Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property

Heming LIN, Dongming QI, Jian HAN, Zhiqi CAI, Minghua WU

期刊论文

Dispersion of a novel phenolic rigid organic filler in isotactic polypropylene matrix by solution-mixing

Dongming QI, Xiaoli ZHAO, Zhijie CHEN, Peng HUANG, Jun CAO

期刊论文

Influence of the filler materials on flux-free brazing of pure aluminium (1050)

Kirsten BOBZIN, Lidong ZHAO, Thomas SCHLAEFER, Thomas WARDA,

期刊论文

Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation

QI Dongming, YANG Lei, WU Minghua, LIN Heming, NITTA Kohhei

期刊论文

Phenolic rigid organic filler/isotactic polypropylene composites. II. Tensile properties

QI Dongming, SHAO Jianzhong, WU Minghua, NITTA Kohhei

期刊论文

Performance of a hybrid anaerobic-contact oxidation biofilm baffled reactor for the treatment of decentralized molasses wastewater

Minmin LIU,Ying ZHAO,Beidou XI,Li’an HOU,Xunfeng XIA

期刊论文

Morphological and mechanical characterization of a PMMA/CdS nanocomposite

Vishal MATHUR, Manasvi DIXIT, K.S. RATHORE, N. S. SAXENA, K.B. SHARMA

期刊论文

Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers

Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang

期刊论文

Wide gap active brazing of ceramic-to-metal-joints for high temperature applications

K. Bobzin,L. Zhao,N. Kopp,S. Samadian Anavar

期刊论文

Ion conduction path in composite solid electrolytes for lithium metal batteries: from polymer rich to ceramic rich

Zhouyu ZHANG, Hao CHEN, Zhenglin HU, Shoubin ZHOU, Lan ZHANG, Jiayan LUO

期刊论文

Recycling polymeric waste from electronic and automotive sectors into value added products

Abhishek Kumar, Veena Choudhary, Rita Khanna, Romina Cayumil, Muhammad Ikram-ul-Haq, Veena Sahajwalla, Shiva Kumar I. Angadi, Ganapathy E. Paruthy, Partha S. Mukherjee, Miles Park

期刊论文